
15.097 Machine Learning via a Modern Optimization Lens

Place-Time: E51-345, TR: 2:30-4:00

Instructor:

Dimitris Bertsimas, E40-111; Tel.: (617) 253-4223; O�ce hours: by appointment; e-mail: dbert-

sim@mit.edu; homepage: http://web.mit.edu/dbertsim/www/

Teaching Assistants:

Colin Pawlowski, email: cpawlows@mit.edu, O�ce hours: TBA

Ying Daisy Zhuo, email: zhuo@mit.edu, O�ce hours: TBA

Recitation: Fridays: TBA.

Course Content and Objectives: The majority of the central problems of regression, clas-

sification and estimation have been addressed using heuristic methods even though they can be

formulated as formal optimization problems. While continuous optimization approaches has had

a significant impact in Machine Learning (ML)/ Statistics (S), mixed integer optimization (MIO)

has played a very limited role, primarily based on the belief that MIO models are computationally

intractable. The last three decades have witnessed a) algorithmic advances in MIO, which coupled

with hardware improvements have resulted in an astonishing over 2 trillion factor speedup in solv-

ing MIO problems, b) significant advances in our ability to model and solve very high dimensional

robust and convex optimization models.

Our objective in this course is to revisit some of the classical problems in ML/S and demonstrate

that they can greatly benefit by a modern optimization treatment. The optimization lenses we use

in this course are: convex, robust and mixed integer optimization. In all cases we demonstrate that

optimal solutions to large scale instances (a) can be found in seconds, (b) can be certified to be

optimal/near-optimal in minutes and (c) outperform classical heuristic approaches in out of sample

experiments involving real and synthetic data.
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The problems we address in this course include:

• variable selection in linear and logistic regression,

• convex, robust, and median regression,

• an algorithmic framework to construct linear and logistic regression models that satisfy prop-

erties of sparsity, robustness, significance, absence of multi-collinearity in an optimal way,

• optimal classification and regression trees and their relationship with neural networks,

• how to transform predictive algorithms to prescriptive algorithms,

• optimal prescriptive trees

• robust classification

• design of experiments via optimization

• missing data imputations using modern optimization,

• mixture of Gaussian models via MIO,

• exact bootstrap

• sparse matrix estimation including principal component analysis, factor analysis, inverse co-

variance matrix estimation and matrix completion.

Text: Research papers and class notes. All handouts can be downloaded from:

https://stellar.mit.edu/S/course/15/sp15/15.097/

Recitations: The recitations will cover software implementation in Julia, computational aspects,

and examples and applications that enhance the theory developed in the lectures.

Course Requirements: Problem sets, and one final team project. A project will need to in-

volve up to two students per project. Grades will be determined by performance on the above

requirements weighted approximately as 60% problem sets, and 40% final team project.
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Lecture Time Topic Readings

1 T, 2/06 The Optimization Lenses and Machine Learning

2 R, 2/08 Best Subset in Linear Regression [14, 27]

3 T, 2/13 Robust Linear Regression [3]

4 R, 2/15 Algorithmic Framework for Linear Regression [12, 19]

T, 2/20 Class on Monday Schedule

5 R, 2/22 Median Regression [20]

6 T, 2/27 Convex Regression [23]

7 R, 3/01 Classification: Sparsity and Robustness [8, 13, 24]

8 T, 3/06 Support Vector Machines [8]

9 R, 3/08 Optimal Classification Trees [5]

10 T, 3/13 Optimal Regression Trees [6]

11 R, 3/15 Optimal Prescriptive Trees [7]

12 T, 3/20 Optimal Trees and Neural Networks [21]

13 R, 3/22 Power of Optimization over Randomization [9, 15]

T, 3/27 Spring break

R, 3/29 Spring break

14 T, 4/03 Identiying Exceptional Responders [16]

15 R, 4/05 From Predictions to Prescriptions I [10]

16 T, 4/10 From Predictions to Prescriptions II [11, 22]

17 R, 4/12 Missing Data Imputations [25]

T, 4/17 Patriots Vacation–Vacation

18 T, 4/19 Mixture of Gaussians via MIO [1]

19 R 4/24 Exact Bootstrap [26]

20 R, 4/26 Sparse Principal Component Analysis [2]

21 T, 5/01 Certifiably Optimal Low Rank Factor Analysis [4]

22 R 5/03 Certifiably Optimal Sparse Inverse Covariance Estimation [17]

23 T, 5/08 Matrix Completion I [28]

24 R, 5/10 Matrix Completion II [18]

25 T, 5/15 Project Presentations

26 R, 5/17 Project Presentations
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