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Motivated by the fact that there may be inaccuracies in features and labels of training data, we apply

robust optimization techniques to study in a principled way the uncertainty in data features and labels

in classification problems, and obtain robust formulations for the three most widely used classification

methods: support vector machines, logistic regression, and decision trees. We show that adding robustness

does not materially change the complexity of the problem, and that all robust counterparts can be solved in

practical computational times. We demonstrate the advantage of these robust formulations over regularized

and nominal methods in synthetic data experiments, and we show that our robust classification methods

offer improved out-of-sample accuracy. Furthermore, we run large-scale computational experiments across

a sample of 75 data sets from the UCI Machine Learning Repository, and show that adding robustness

to any of the three non-regularized classification methods improves the accuracy in the majority of the

data sets. We observe the most significant gains for robust classification methods on high-dimensional and

difficult classification problems, with an average improvement in out-of-sample accuracy of robust vs. nominal

problems of 5.3% for SVM, 4.0% for logistic regression, and 1.3% for decision trees.
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1. Introduction

Three of the most widely used classification methods are SVM (Support Vector Machines), logistic

regression, and CART (Classification and Regression Trees) (Friedman et al. 2001). These classifiers

are among the state-of-the-art machine learning methods, giving high out-of-sample accuracy on

many real-world data sets and admitting tractable training algorithms for large-scale problems.

However, in many scenarios, the training data are subject to uncertainty which can negatively

affect the performance of these classifiers. Regularization is a common technique for mitigating the

effect of data uncertainty and addressing the problem of overfitting. In this paper, we propose a

novel approach for developing improved classifiers using techniques from robust optimization to

explicitly model uncertainty in the data in a principled manner.
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Support vector machines were first introduced by Cortes and Vapnik (1995) and have gained

popularity since then. SVM classifiers find a hyperplane that maximizes the margin of separation

and use a hinge loss function when the data are not separable. Alternatively, the geometric concept

of margin can be viewed as a form of regularization. Previous work has shown the equivalence

between support vector machines and a robust formulation of the hinge loss classifier (Xu et al.

2009). In this paper, we develop new robust formulations for SVM and other classifiers which lead

to further gains in out-of-sample accuracy compared to non-robust methods.

Logistic regression is one of the oldest and most widely used classification methods that models

the probability of a response belonging to a certain class. The performance of logistic regression can

be improved by introducing a regularization term to penalize model complexity, and the resulting

problem can be solved efficiently for large scale problems (Friedman et al. 2010). Decision trees,

a family of classification methods, aim to partition the space recursively and make predictions

based on the region into which the points fall. Popular methods such as CART (Breiman et al.

1984) construct the partitions with greedy heuristic methods, although recently methods have been

developed that efficiently find globally optimal solutions to the decision tree problem (Bertsimas

and Dunn 2017). In practice, scientists and researchers apply these methods to real-world problems

using packages which have been developed in R and other programming languages. Methods for

SVM, logistic regression, and CART are included in the R packages e1071, stats, and rpart,

respectively.

The model training problems for SVM, logistic regression, and decision trees can all be formu-

lated and solved as traditional optimization problems, and therefore can benefit from the systematic

improvements in model formulation and solver speeds in this area. Recent studies have explored

using modern Mixed Integer Optimization (MIO) methods to solve problems in classical statistics

such as the Least Quantile Squares (Bertsimas and Mazumder 2014) and Best Subset Selection

problems (Bertsimas et al. 2016), and to create algorithmic approaches for fitting regression mod-

els (Bertsimas and King 2015, 2017). These methods have been successful in part due to dramatic

increases in hardware and software computing power for MIO over the past 30 years.

One of the biggest challenges in the field of machine learning is to design models that avoid

the issue of overfitting, where the model describes the noise instead of the underlying relationship.

Strong models should take into consideration the noise structure during model estimation, and in

many real-world problems, the data representing both the feature variable (xi, i= 1, . . . n) as well

as the label variable (yi, i= 1, . . . , n) are subject to error. For example, the “Wisconsin Diagnostic

Breast Cancer” data set is widely used in the machine learning community. This data set involves

classifying benign and malignant tumors, with features computed from digitized images including

the radius, texture, symmetry, etc. of the cell nuclei. Even though the features in this data set
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are relatively precisely measured, the images are not free from noise, and the accuracy of the

measurements depends on the precision of the recognition programs. More generally, in data sets

with missing data that require imputation, uncertainties are also introduced.

As an example of label uncertainty, in the “Contraceptive Method Choice” data set from the

UCI machine learning repository, women were surveyed to report their current contraceptive

method choice as well as demographic and socio-economic characteristics. Because of the survey

nature of the data, we may suspect that some respondents have reported dishonest answers to

the questions about their choice of contraceptive method. In cancer clinical trials, caregivers

determine whether or not each patient has achieved remission, and these labels are subjective and

depend upon the accuracy of the tumor measurement. Another common source for such errors is

the employment of labeling personnel to provide labels for the training set. Therefore, it seems

natural to expect that some of the labels may be incorrect when training the classifier.

Related Work

To date, there has not been a principled way of modeling data uncertainty directly for classification

problems in the literature. In this paper, we propose a framework based on robust optimization

to address classification problems whose data (both in features and in labels) are subject to error.

Robust optimization is a flexible framework for modeling uncertainty (Ben-Tal et al. 2009) and is

arguably one of the fastest growing areas of optimization in the last decade. For a wide variety

of problems in domains such as finance, statistics, and health care, robust formulations have been

shown to be computationally tractable and lead to improved solutions compared to the classical

optimization formulations (Bertsimas et al. 2011). The key advantage of robust solutions is that

they provide near optimal solutions that remain feasible when problem parameters are perturbed,

and thus are attractive when the problem is subject to uncertainty.

In particular, robust optimization has been shown to lead to improvements for many statistics

problems. In the machine learning community, the success of SVM in classification and Lasso in

regression has been largely attributed to their regularization terms that reduce data overfitting.

Pant et al. (2011) demonstrate how robust classification can be used to handle situations with

imbalanced training data, and Livni et al. (2012) derive classifiers protected against stochastic

adversarial perturbations to the training data. Xu et al. (2009) establish that robustness is a key

reason behind the strong performance of regularized methods, due to the generalization ability of

robustness.

There has been prior work which consider robust optimization classifiers based upon SVM,

first proposed in (Zhang 2005, Bhattacharyya et al. 2005). These approaches have dealt mainly

with feature uncertainty. One of the robust classification methods proposed in this paper, namely
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feature-robust SVM, closely resembles the linear optimization robust classifiers proposed by Trafalis

and Gilbert (2007), except these methods contain an additional regularizer term in the objective.

This difference is important because more recently, it has been shown that a robust optimization

formulation of the maximum margin classifier is equivalent to the classical SVM; thus methods

derived as robust variations to classical SVM are “double-counting” the effect of robustness (Xu

et al. 2009, Bertsimas and Copenhaver 2017). In addition, there have been previous attempts to

model uncertainties in labels for SVM, although these methods are largely heuristic in nature and

have been tested primarily on synthetic or contaminated data (Biggio et al. 2011, Natarajan et al.

2013). There has also been work on robustifying kernel SVM methods against feature uncertainty

by Ben-Tal et al. (2012). The approach we present could be extended to kernel methods, but this

is beyond the scope of the paper.

For logistic regression, regularized versions such as Elastic Net have been proposed (Zou and

Hastie 2005), which consider adding a convex combination of the `1 and `2-norm penalty to the

objective; however these regularized classifiers were not derived using tools from robust optimiza-

tion. Using robust optimization, logistic regression models that are robust to feature uncertainty

have been derived for various uncertainty sets (El Ghaoui et al. 2003, Harrington et al. 2010).

To our knowledge, no work has been done framing decision trees as a robust optimization prob-

lem. Because tractable formulations and solution methods for the optimal decision tree problem

were proposed quite recently in (Bertsimas and Dunn 2017), robust optimal decision trees have

not been explored.

In summary, results from the literature indicate that ideas from robust optimization have the

potential to add value to existing classification methods. Prior work on SVM establishes the equiv-

alence between regularization and robustness for certain problems, and in some examples robust

classifiers yield higher out-of-sample accuracy compared to nominal methods. However, these works

have largely focused on theoretical derivations of robust methods, with limited testing on synthetic

data. Without extensive computational experiments, we do not know if these robust classifiers yield

gains in out-of-sample accuracy in practice, especially in comparison with regularized methods.

We build upon these previous efforts to present a framework for robust classification which

accommodates three of the most widely used classification methods: SVM, logistic regression,

and CART. By considering a diverse variety of classifiers, we compare the impact of adding

robustness to different models, and we evaluate the performance of these methods in practice

through large-scale computational experiments.

Contributions

This paper shows how to incorporate robustness in classification problems generally. Under the
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framework of robust optimization, we systematically develop new robust methods that offer pre-

dictable improvements in out-of-sample accuracy over nominal classifiers. We summarize our con-

tributions in this paper below:

1. We present a principled framework for robust classification, which combines ideas from robust

optimization and machine learning, with an aim to build classifiers that model data uncer-

tainty directly. Building on previous work for modeling feature uncertainty, we introduce an

approach for modeling uncertainty in labels, as well as both features and labels simultane-

ously. By viewing machine learning algorithms as a family of optimization problems, we show

that the robustification of existing classification methods can be done in a unified and prin-

cipled way. This leads to tractable problems with relatively small overhead compared to the

original methods. In particular, we use this framework to derive counterparts to SVM, logistic

regression, and CART that are robust to variations in features and labels in the data. In the

case where we consider feature uncertainty only, the resulting robust formulations for SVM

and logistic regression match previous results in the literature.

2. We demonstrate the advantage of robust formulations over regularized and nominal methods

through synthetic data experiments with two classes divided by a separating hyperplane. Com-

pared to nominal and regularized methods, the robust SVM and logistic regression methods

recover the separating hyperplane classifiers closer to the truth, leading to gains in out-of-

sample accuracy especially in the worst case analysis.

3. We demonstrate that robust classification improves out-of-sample accuracy in large-scale com-

putational experiments across a sample of 75 data sets from the UCI Machine Learning

Repository. Furthermore, we identify characteristics of classification problems for which robust

methods lead to significant accuracy gains compared to non-robust methods. Specifically, in

problems with high dimensional data and difficult separability, the value of robustness is even

more prominent.

4. We provide a simple, empirically-derived decision rule for machine learning practitioners that

predicts with high accuracy when robust methods can offer significant improvement over the

nominal methods, with an average improvement in out-of-sample accuracy of 5.3% for SVM,

4.0% for logistic regression, and 1.3% for CART. Compared to regularized SVM or logistic

regression, the average out-of-sample accuracy improvement of our principled approach to

robustness is 2.1% over regularized SVM and 1.2% over regularized logistic regression when

this rule is satisfied.

We would like to distinguish robust optimization in statistical problems from the field of robust

statistics, developed by Huber (1981), which studies how an estimator performs under perturbation

of the model. Even though both fields share the motivation to avoid unduly effects from outliers,
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the underlying methodologies are totally different and address the problems from separate angles.

While robust statistics passively evaluates the robustness properties of a given algorithm, robust

optimization actively constructs models which take into account data uncertainty.

The structure of the paper is as follows. In Section 2, we present a selection of widely-used clas-

sification methods. In Section 3, we give a brief introduction to robust optimization and introduce

some terms and properties that will be used later. In Section 4, we demonstrate how to apply

robust optimization to the classification methods to derive a family of classification methods that

are robust to uncertainty in the features of the training data set. In Section 5, we repeat this process

to develop methods that are robust to uncertainty in data set labels. In Section 6, we combine these

approaches to develop classification methods that are robust to noise in both features and labels. In

Section 7, we compare the performance of these robust classification methods to their non-robust

counterparts and regularized methods through a series of synthetic data experiments. In Section 8,

we comprehensively compare the performance of our robust classifiers to their benchmark methods

on a wide range of real data sets. We conclude in Section 9.

2. Overview of Classification Methods

In this section, we present a selection of widely-used methods for classification. These are the

methods to which we will later apply robust optimization techniques. For this section and in the

rest of the paper, let {xi, yi}ni=1 be the training data provided for the classification task, where

xi ∈Rp is the feature vector and yi ∈ {−1,1} is the label for observation i.

2.1. Soft-Margin Support Vector Machines

Soft-margin support vector machines are a variation on the simpler maximal margin classifier which

relax the requirement that the data be separable and instead allow for points to be incorrectly

classified (Cortes and Vapnik 1995). Support vector machines use hinge loss as the loss function,

and balance the minimization of total loss and maximization of margin with parameter C that can

be tuned via validation. This classifier can be formulated as the following problem:

min
w,b

1
2
‖w‖22 +C

n∑
i=1

max{1− yi(wTxi− b),0}. (1)

Problem (1) can equivalently be formulated as the following problem:

min
w,b

1
2
‖w‖22 +C

n∑
i=1

ξi

s.t. yi(w
Txi− b)≥ 1− ξi i= 1, . . . , n,

ξi ≥ 0 i= 1, . . . , n.

(2)
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The dual problem can be formulated through the use of Lagrange multipliers:

max
α

C
n∑
i=1

αi−
1

2

n∑
i=1

n∑
j=1

αiαjyiyjxi
Txj

s.t. 0≤ αi ≤C i= 1, . . . , n,
n∑
i=1

αiyi = 0.

Both the primal and dual are convex quadratic optimization problems. Since the dual problem has

fewer decision variables, and the majority of these variables tend to be equal to zero or the cost

parameter C in the optimal solution, it is typically the problem solved in practice (Friedman et al.

2001). In addition, the dual form is advantageous because it allows us to do the kernel trick to learn

non-linear decision rules (Cortes and Vapnik 1995). Alternatively, we may modify the objective

function of problem (1) by changing the norm of the regularizer term from `2 to `1 (Zhu et al.

2004). The resulting classifier is formulated as follows:

min
w,b

‖w‖1 +C
n∑
i=1

ξi

s.t. yi(w
Txi− b)≥ 1− ξi i= 1, . . . , n,

ξi ≥ 0 i= 1, . . . , n.

(3)

Problem (3), which we refer to as `1-regularized SVM, is equivalent to a linear optimization problem

which is efficiently solvable.

2.2. Logistic Regression

Logistic regression assumes the response variable Y follows a Bernoulli distribution with the prob-

ability depending on the x and the model parameter β ∈Rp, β0 ∈R

P(Y = 1|X = x) =
eβ

T x+β0

1 + eβ
T x+β0

,

P(Y =−1|X = x) =
1

1 + eβ
T x+β0

.

Concisely, the conditional probability can be written as

P(Y = yi|X = x) =
1

1 + e−yi(β
T xi+β0)

.

Logistic regression coefficients β and β0 are typically fit using maximum likelihood method. The

log-likelihood is

−
n∑
i=1

log

(
1 + e−yi(β

Txi +β0)
)
.

Therefore, the maximum-likelihood estimators β and β0 aim to solve the following problem:

max
β,β0

−
n∑
i=1

log

(
1 + e−yi(β

Txi +β0)
)
. (4)
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Problem (4) is a concave maximization problem that is efficiently solvable by methods such as

coordinate descent or Newton’s method (Bertsekas 1999).

Similar to the regularization techniques in the popular lasso regression (Tibshirani 1996) for

variable selection and shrinkage, a regularization term can be added to the logistic regression

likelihood function, giving

max
β,β0

−
n∑
i=1

log

(
1 + e−yi(β

Txi +β0)
)
−λ‖β‖q, (5)

where ‖ · ‖q is a given `q norm.

2.3. Decision Trees and CART

Decision Trees are a family of classification methods that seek to recursively partition the feature

space into disjoint regions and predict labels for new points based upon the region into which

the point falls. The most widely-used method for training decision trees is CART (Breiman et al.

1984), which takes a greedy heuristic approach to constructing the tree rather than posing the

entire process as a single optimization problem.

However, in order to use robust optimization techniques to create robust decision trees, we

require the formulation of the decision tree training problem as a formal optimization problem.

Optimal Decision Trees (Bertsimas and Dunn 2017) are a recent method that considers the entire

decision tree learning procedure as a single mixed-integer optimization problem, and uses this to

take a globally optimal view while constructing the tree. To create robust decision tree methods,

we will take the Optimal Decision Tree problem and apply robust optimization.

Consider the problem of training a general decision tree. At each branch node in the tree, a split

of the form aTx< b is applied. Points that satisfy this constraint will follow the left branch of the

tree, while those that violate the constraint follow the right branch. Each leaf node is assigned

a label, and each point is assigned the label of the leaf node into which the point falls. Figure 1

summarizes this for an example decision tree with two branch nodes, A and B, that apply splits

aTAx< bA and aTBx< bB respectively. There are three leaf nodes that assign labels {-1}, {+1}, and

{+1} (from left to right in the figure).

Given that the tree contains K nodes, we define the sets PLk , PRk , and Pk for k = 1, . . . ,K to

capture the hierarchy of the tree

• PLk = the ancestors of node k in the tree of which we have taken the left branch (a split of the

form aTk xi < bk) to get to node k;

• PRk = the ancestors of node k of which we have taken the right branch (a split of the form

aTk xi ≥ bk) to get to node k;

• Pk =PLk ∪PRk , i.e., all ancestors of node k.
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Figure 1 An example of a decision tree with two partition nodes and three leaf nodes

A

B +1

-1 +1

aTAx< bA aTAx≥ bA

aTBx< bB aTBx≥ bB

We will now state the Optimal Decision Tree problem from Bertsimas and Dunn (2017) below as

Problem (6) and then provide an explanation of the model:

min
K∑
k=1

fk−
K∑
k=1

λkdk (6a)

s.t. gk =
n∑
i=1

1− yi
2

zik k= 1, . . . ,K, (6b)

hk =
n∑
i=1

1 + yi
2

zik k= 1, . . . ,K, (6c)

fk ≤ gk +M [wk + (1− ck)] k= 1, . . . ,K, (6d)

fk ≤ hk +M [(1−wk) + (1− ck)] k= 1, . . . ,K, (6e)

fk ≥ gk−M [(1−wk) + (1− ck)] k= 1, . . . ,K, (6f)

fk ≥ hk−M [wk + (1− ck)] k= 1, . . . ,K, (6g)

dk = 1 k= dK/2e, . . . ,K, (6h)

dk ≤ dj k= 1, . . . ,K,∀j ∈Pk, (6i)

dk +

p∑
l=1

akl = 1 k= 1, . . . ,K, (6j)

K∑
k=1

zik = 1 i= 1, . . . , n, (6k)

zik ≤ dk i= 1, . . . , n, k= 1, . . . ,K, (6l)

zik ≤ 1− dj i= 1, . . . , n, k= 1, . . . ,K,∀j ∈Pk, (6m)
n∑
i=1

zik ≥Nck k= 1, . . . ,K, (6n)

ck ≥ dk−
∑
j∈Pk

dj k= 1, . . . ,K, (6o)

aTj xi + ε≤ bj +M (1− zik) i= 1, . . . , n, k= 1, . . . ,K,∀j ∈P lk, (6p)
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aTj xi ≥ bj −M (1− zik) i= 1, . . . , n, k= 1, . . . ,K,∀j ∈Puk , (6q)

ak ∈ {0,1}p k= 1, . . . ,K, (6r)

0≤ bk ≤ 1 k= 1, . . . ,K, (6s)

zik,wk, ck, dk ∈ {0,1} i= 1, . . . , n, k= 1, . . . ,K. (6t)

At each node k = 1, . . . ,K in the tree, we must decide whether to apply a split or set the node

to be a leaf node. The binary variable dk takes value 1 if no split is applied, and 0 otherwise.

If we choose to apply a split at a node k, the variables ak and bk are used to set a split of the form

aTk x< bk. To mirror the behavior of CART, we only consider univariate decision trees and hence

we only allow a single variable to be used in each split. This is achieved by the constraints (6r),

which forces the components of ak to be binary, and (6j) means we can only choose one of these

variables at each node. Note that (6j) also forces a = 0 if dk = 1, so we cannot apply a split at a

node that has been marked as a leaf node.

We use the binary variables zik to track which leaf node k each point i= 1, . . . , n in training set

is assigned. Constraints (6p) and (6q) ensure that points are assigned only to a node if they satisfy

all required splits, while constraints (6l) and (6m) ensure that points can only be assigned to leaf

nodes. Finally, (6k) ensures that each point is assigned to exactly one leaf node.

The objective is to minimize the number of misclassified points. The number of misclassified

points in a node k is tracked using the variable fk. Note that it is always better to assign the leaf

node a label that agrees with the most common label among points in the node. This means the

misclassification count is given by the size of the minority label. We use the variables gk and hk to

count the number of points of each label in each node k, which is achieved with constraints (6b)

and (6c). Constraints (6d) through (6g) set fk to min{gk, hk} to count the misclassification in each

node, and the objective sums this misclassification over all nodes.

CART imposes a constraint relating to the minbucket parameter, which requires each leaf node

to contain at least this number of points. Constraints (6n) and (6o) enforce this restriction in the

model for a supplied minbucket parameter N .

The small number of remaining constraints relate to ensuring the decision to split or not at each

node is permitted by the structure of the tree. For example, no leaf node is permitted to have a

child node. We omit the full details of these precedence constraints from this description of the

model and instead refer the reader to Bertsimas and Dunn (2017) for the complete description.

This is a mixed-integer optimization problem that is practically solvable on real-world data sets

and leads to results that are highly competitive with heuristic decision tree methods like CART (see

Bertsimas and Dunn (2017) for a comprehensive comparison).



Bertsimas et al.: Robust Classification
Article submitted to INFORMS Journal on Optimization; manuscript no. IJO-2017-10-006.R2 11

3. Brief Overview of Robust Optimization

In this section, we give an overview of robust optimization and introduce the notions of uncertainty

sets and dual norms that will be used later when applying robust optimization techniques to the

unified classification framework.

Robust optimization is a means for modeling uncertainty in optimization problems without

the use of probability distributions. Under this modeling framework, we construct deterministic

uncertainty sets that contain possible values of uncertain parameters. We then seek a solution that

is optimal for all such realizations of this uncertainty. Consider the general optimization problem:

max
x∈X

c(u,x)

s.t. g(u,x)≤ 0,

where x is the vector of decision variables, u is a vector of given parameters, c is a real-valued

function, g is a vector-valued function, and 0 is the vector of all zeros. Relaxing the assumption

that u is fixed, we assume instead that the realized values of u are restricted to be within some

uncertainty set U . We form the corresponding robust optimization problem by optimizing against

the worst-case realization of the uncertain parameters across the entire uncertainty set:

max
x∈X

min
u∈U

c(u,x)

s.t. g(u,x)≤ 0 ∀u∈ U .

Despite typically having an infinite number of constraints, it is often possible to reformulate the

problem as a deterministic optimization problem with finite size, depending on the choice of uncer-

tainty set U . The resulting deterministic problem is deemed the robust counterpart, which may be

a problem of the same complexity as the nominal problem, depending on the structure of U .

There is extensive evidence in the literature that robust solutions have significant advantages

relative to nominal solutions. A case study of linear optimization problems from the NETLIB

library found that in 13 out of 90 problems, the optimal non-robust solution violates some of

the inequality constraints by more than 50% of the right-hand side values, when the uncertain

coefficients are subject to small (0.01%) perturbations. On the other hand, robust solutions for

these identical problems which are feasible for all perturbations up to 0.1% lead to objective values

that are within 1% of the optimal (Ben-Tal and Nemirovski 2000).

Dual Norms Let x = (x1, . . . , xn) be a vector in Rn. For any real number q ≥ 1, we define the

`q norm of x in the standard way, denoted by ‖x‖q:

‖x‖q ,
( n∑
i=1

|xi|q
) 1
q

.
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A particular problem that is encountered frequently when using robust optimization is the so-called

dual norm problem:

max
‖x‖q≤1

{aTx}.

When q > 1, the optimal solution to this problem is ‖a‖q∗, where q∗ = 1

1− 1
q
. This `q∗ norm is called

the dual norm of the `q norm. In addition, when q = 1, it can be shown that the optimal solution

to this problem is ‖a‖∞, where the `∞ norm of a vector x∈Rn is defined by

‖x‖∞ , lim
q→∞
‖x‖q = max{|x1|, |x2|, . . . , |xn|}.

A simple extension to this problem is when the norm of x is restricted by any number ρ > 0. In

this case we have the following:

max
‖x‖q≤ρ

{aTx}= max
‖y‖q≤1

{aT (ρy)}= ρ · max
‖y‖q≤1

{aTy}, (7)

and the optimal solution to this problem is thus ρ‖a‖q∗ .

4. Robustness Against Uncertainty in Features

In this section, we present the notion of robustifying classification methods against uncertainties

in the features of the training set. Using an uncertainty set to model possible values of the features

in reality, we then define and state the feature-robust counterpart for each of the classification

methods. We note that the feature-robust counterparts for SVM and logistic regression are known

in the literature, but we include their derivation here for completeness.

4.1. Motivating Feature-Robustness

Uncertainties in the features can arise from measurement errors during data collection and from

input errors during data manipulation and missing value imputation. If left unaddressed, the

trained model may be biased and severely influenced by inaccuracies in the data. Our goal is to

train a feature-robust model that takes such uncertainties into account, which is stable and provides

high accuracy in circumstances where data are perturbed.

With the robust approach, such uncertainties are taken into consideration when training the

classifiers. To model uncertainty in the features of the training set, we assume that the data xi

are subject to additive perturbations ∆xi ∈ Rp, i= 1, . . . , n. Let ∆X = (∆x1,∆x2, . . .∆xn) and

define the following uncertainty set:

Ux = {∆X∈Rn×p | ‖∆xi‖q ≤ ρ, i= 1, . . . , n}, (8)

where ρ is a parameter controlling the magnitude of the considered perturbations, and hence the

degree to which the features in the training set are able to deviate from their nominal values.
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After introducing these perturbations, the features in the training set take values xi + ∆xi, i=

1, . . . , n. We now seek to construct a classifier that is robust to all such perturbations ∆X∈ Ux. To

do this, we robustify against this uncertainty set of feature parameters in each of our classification

methods. In practice, the parameter ρ can be chosen via validation, and the range to be searched

over can be fixed if each feature in the data set is normalized. We also note that when ρ= 0, the

problem is equivalent to the nominal problem, and so the nominal solution is a possible candidate

to be considered during validation. This means the feature-robust classifier will only be preferred

over the nominal method when the validation score is better.

In addition, note that Ux is the Cartesian product of the sets {∆xi ∈Rp|‖∆xi‖q ≤ ρ}, i= 1, . . . , n.

This structure enables us to derive tractable robust counterparts for all three classification methods.

We may consider alternative uncertainty sets for the feature perturbations as well, for example

polyhedral or ellipsoidal uncertainty sets. Here, we consider the norm uncertainty set Ux because

it admits a simple geometric interpretation and only requires tuning a single parameter ρ, which

makes it tractable to evaluate in the computational experiments and to use in practice.

We present the reformulated robust counterparts below for soft-margin support vector machines,

logistic regression, and optimal decision trees. For each method, we refer to the resulting deter-

ministic optimization problem as the feature-robust counterpart of that classifier.

4.2. Soft-Margin Support Vector Machines

The regularized Support Vector Machine problem in (2) has been shown by Xu et al. (2009) and

Fertis (2009) to be equivalent to the robust counterpart of a nominal problem under a particular

choice of uncertainty set in the features. These results suggest that the regularization term ‖w‖22 is a

by-product of feature robustness. Further discussion of the equivalence between classical SVM and

feature-robust formulations is provided in Appendix A. In the following sections, to avoid double

counting the effect of robustness, we consider the hinge loss classifier without the regularization

term to be the nominal method for SVM:

min
w,b

n∑
i=1

max{1− yi(wTxi− b),0}. (9)

Robustifying Problem (9) against the uncertainty set Ux gives the following robust optimization

problem:

min
w,b

max
∆X∈Ux

n∑
i=1

max{1− yi(wT (xi + ∆xi)− b),0}. (10)

We now derive the robust counterpart to Problem (10). Note that this is equivalent to Theorem

3 in (Xu et al. 2009).
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Theorem 1. The robust counterpart to Problem (10) is

min
w,b

n∑
i=1

ξi

s.t. yi(w
Txi− b)− ρ‖w‖q∗ ≥ 1− ξi i= 1, . . . , n,

ξi ≥ 0 i= 1, . . . , n.

(11)

where `q∗ is the dual norm of `q.

Proof. We can reformulate Problem (10) as

min
w,b

n∑
i=1

ξi

s.t. yi(w
T (xi + ∆xi)− b)≥ 1− ξi ∀∆X∈ Ux i= 1, . . . , n,

ξi ≥ 0 i= 1, . . . , n.

The first constraint must be satisfied for all ∆X∈ Ux, thus the constraint is equivalent to

min
∆X∈Ux

(yiw
T∆xi)≥ 1− ξi− yi(wTxi− b) i= 1, . . . , n.

Here, for all i = 1, . . . , n, the minimization term is equal to the objective value of the following

optimization problem:
min
∆xi

yiw
T∆xi

s.t. ‖∆xi‖q ≤ ρ.
Because yi is constant, we recognize this optimization problem as the dual norm problem. Therefore,

by (7), for any given value of w, the objective value of this problem is −ρ‖w‖q∗ , where `q∗ is the

dual norm of `q. Replacing the minimization term with this optimal value and rearranging yields

(11). �

Depending on the choice of norm, the feature-robust counterpart of SVM can be solved efficiently

using various optimization methods. For example, when q = q∗ = 2, feature-robust SVM can be

solved using second-order cone optimization methods (Bertsekas 1999). When q = 1, q∗ =∞ or

q=∞, q∗ = 1, feature-robust SVM can be reformulated as a linear optimization problem.

4.3. Logistic Regression

Robustifying Problem (4) against the uncertainty set Ux yields the following robust optimization

problem:

max
β,β0

min
∆X∈Ux

−
n∑
i=1

log

(
1 + e−yi(β

T (xi + ∆xi) +β0)
)
. (12)

Next we determine the robust counterpart to Problem (12). We note that similar results on more

specific uncertainty sets have been previously shown in El Ghaoui et al. (2003), Harrington et al.

(2010).
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Theorem 2. The robust counterpart to Problem (12) is

max
β,β0

−
n∑
i=1

log

(
1 + e−yi(β

Txi +β0) + ρ‖β‖q∗
)
, (13)

where `q∗ is the dual norm of `q.

Proof. Consider the inner minimization problem in (12), which is the following optimization

problem:

min
∆X∈Ux

−
n∑
i=1

log

(
1 + e−yi(β

T (xi + ∆xi) +β0)
)
. (14)

Let ωi = yi(β
T (xi + ∆xi) + β0), and define g(ωi) =− log (1 + e−ωi). The first-order derivative of g

with respect to ωi is
dg

dωi
=

1

1 + eωi
,

which is strictly positive. Therefore, for each i= 1, . . . , n, the solution to the inner minimization

problem in (12) is the same as the solution of the problem

min
∆xi

yi(β
T (xi + ∆xi) +β0)

s.t. ‖∆xi‖q ≤ ρ.
(15)

This is equivalent to the following problem:

yi(β
Txi +β0)−max

∆xi
− yiβT∆xi

s.t. ‖∆xi‖q ≤ ρ.

We recognize this maximization term as the dual norm problem. Therefore, by (7), the optimal

solution is ρ‖β‖q∗ , where `q∗ is the dual norm of `q. We conclude that the optimal value to (15)

is yi(β
Txi + β0)− ρ‖β‖q∗ . Substituting the optimal value into the inner minimization problem in

(12), we obtain

−
n∑
i=1

log

(
1 + e−yi(β

Txi +β0) + ρ‖β‖q∗
)
.

Maximizing the above equation over β, β0 yields (13). �

If q≥ 2, the robust counterpart (13) is differentiable (as in the nominal problem) and thus is still

solvable using gradient and Newton methods. However, if q ∈ {1,∞} then Problem (13) becomes

non-differentiable and we may solve it using subgradient methods. Alternatively, we may remodel

the nonlinear terms to obtain a differentiable formulation with linear constraints, which is solvable

using gradient and Newton methods for constrained optimization (Bertsekas 1999).

Compared to the nominal case, the feature-robust counterpart of logistic regression has an addi-

tional ρ‖β‖q∗ term in the exponent of the logit function. It resembles the regularization term in

regularized logistic regression, shown in Equation (5). However, the additional term from robust-

ness penalizes model complexity in the logit, or log odds ratio, while the regularization term is a
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linear penalty on the entire likelihood. The connection between the two can be shown via a first-

order Taylor series expansion of the objective function of the feature-robust counterpart, which

gives the following:

−
n∑
i=1

log

(
1 + e−yi(β

Txi +β0)
)
−

n∑
i=1

e−yi(β
Txi +β0)

1 + e−yi(β
Txi +β0)

ρ‖β‖q∗ .

In cases where ρ‖β‖q∗ is small and its coefficient is close to one, robustification over features and

regularization of logistic regression are approximately equivalent.

4.4. Optimal Decision Trees

Robustifying Problem (6) against the uncertainty set Ux gives a problem identical to Problem (6)

except with the following constraints in place of the constraints (6p) and (6q):

aTj (xi + ∆xi) + ε≤ bj +M (1− zik) ∀∆X∈ Ux, i= 1, . . . , n, k= 1, . . . ,K,∀j ∈P lk, (16a)

aTj (xi + ∆xi)≥ bj +M (1− zik) ∀∆X∈ Ux, i= 1, . . . , n, k= 1, . . . ,K,∀j ∈Puk . (16b)

We refer to this optimization problem as Problem (16).

Theorem 3. The robust counterpart to Problem (16) is identical to Problem (16) except with

the following constraints in place of constraints (16a) and (16b):

aTj xi + ρ+ ε≤ bj + (1− zik) i= 1, . . . , n, k= 1, . . . ,K, ∀j ∈P lk, (17a)

aTj xi− ρ≥ bj + (1− zik) i= 1, . . . , n, k= 1, . . . ,K, ∀j ∈P lk. (17b)

Proof. Because constraint (16a) must hold for all ∆X∈ Ux, this constraint is equivalent to

max
∆X∈Ux

{
aTj ∆xi

}
≤ bj +M (1− zik)−aTj xi− ε i= 1, . . . , n, k= 1, . . . ,K, ∀j ∈P lk.

This maximization term is equal to the optimal value of the following problem:

max aTj ∆xi

s.t. ‖∆xi‖q ≤ ρ.

We recognize this as the dual norm problem, and by (7), the optimal value is ρ‖aj‖q∗ , where `q∗

is the dual norm of `q. Moreover, if this constraint is to be non-trivial (which requires zik = 1), we

know from (6m) that dj = 0 for all ancestors j ∈ P lk. Thus, from (6j) we have that
∑

l ajl = 1 and

so together with (6r) we know that a single element of aj is 1 with all other elements being 0. This

means that ‖aj‖q∗ = 1 for any q, so the value of the maximization term is simply ρ. Rearranging

terms yields the constraint (17a). We use an identical approach to yield (17b) from (16b). �

This remains a linear mixed-integer optimization problem regardless of the original choice of q.

The only difference compared to the nominal problem is the introduction of a margin of size ρ

around each bj. The problem is therefore practically solvable like the nominal problem.
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5. Robustness Against Uncertainty in Labels

In this section, we introduce the notion of robustifying classification methods against uncertainties

in the labels of the training set. We consider a discrete uncertainty set which limits the number

of incorrect labels to be less than or equal to a fixed number Γ. We then define and state the

label-robust counterpart for each of the classification methods.

5.1. Motivating Label-Robustness

Uncertainties in data labels can occur naturally from errors in manual entries, self-reporting, or

non-exact, non-objective label definition. To model uncertainty in the labels of the training set, we

consider a scenario where some number of the supplied labels are incorrect. We introduce variables

∆yi ∈ {0,1}, where 1 indicates that the label was incorrect and has in fact been flipped, and 0

indicates that the label was correct. We consider the following uncertainty set:

Uy =

{
∆y ∈ {0,1}n

∣∣∣∣ n∑
i=1

∆yi ≤ Γ

}
,

where Γ is an integer-valued parameter controlling the number of data points that we allow to

be mislabeled. Observe that in contrast to the uncertainty set over the features, Uy cannot be

decomposed as the Cartesian product of smaller uncertainty sets.

We can then model the true labels of the training set as yi(1 − 2∆yi), i = 1, . . . , n. Applying

robust optimization, we modify the training process so that our classifier is optimized against the

worst-case realization ∆y ∈ Uy to obtain a classifier that is label-robust. In practice, the parameter

Γ which determines the size of our uncertainty set is often modeled as a proportion of the total

number of data points, and can be chosen via validation. Note that when Γ = 0 the problem is the

same as the nominal problem. In this sense, our validation can include the nominal case, so the

best label-robust solution will only be preferred over the nominal case if it leads to an improvement

in accuracy in validation.

As in Section 4, we present the reformulated robust counterparts below for logistic regression,

SVM, and optimal trees. For each method, we refer to the resulting deterministic optimization

problem as the label-robust counterpart of that classifier.

5.2. Soft-Margin Support Vector Machines

Robustifying Problem (2) against the uncertainty set Uy gives

min
w,b

max
∆y∈Uy

n∑
i=1

max{1− yi(1− 2∆yi)(w
Txi− b),0}. (18)
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Theorem 4. The robust counterpart to Problem (18) is

min
n∑
i=1

ξi + Γq+
n∑
i=1

ri

s.t. q+ ri ≥ φi− ξi i= 1, . . . , n,

ξi ≥ 1− yi(wTxi− b) i= 1, . . . , n,

ξi ≤ 1− yi(wTxi− b) +M(1− si) i= 1, . . . , n,

ξi ≤Msi i= 1, . . . , n,

φi ≥ 1 + yi(w
Txi− b) i= 1, . . . , n,

φi ≤ 1 + yi(w
Txi− b) +M(1− ti) i= 1, . . . , n,

φi ≤Mti i= 1, . . . , n,

ri, ξi, φi ≥ 0 i= 1, . . . , n,

q≥ 0,

s, t∈ {0,1}n.

(19)

where M is a sufficiently large constant.

Proof. Fix w and b, and consider the inner maximization problem

max
∆y∈Uy

n∑
i=1

max{1− yi(1− 2∆yi)(w
Txi− b),0} i= 1, . . . , n. (20)

Define the functions

fi(∆yi) = max{1− yi(1− 2∆yi)(w
Txi− b),0}, i= 1, . . . , n.

Since ∆yi ∈ {0,1} for all i, we observe

fi(∆yi) = [fi(1)− fi(0)]∆yi + fi(0) i= 1, . . . , n.

Let φi = fi(1) and ξi = fi(0) for i= 1, . . . , n. It follows that Problem (20) is equivalent to

max
n∑
i=1

(φi− ξi)∆yi + ξi

s.t. ∆y ∈ Uy.

Next, consider the following polyhedron, which is the convex hull of Uy:

Py =

{
∆y ∈Rn

∣∣∣∣ 0≤∆yi ≤ 1,
n∑
i=1

∆yi ≤ Γ

}
.
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Since the polyhedron Py has integer extreme points, this problem is equivalent to its linear relax-

ation

max
n∑
i=1

(φi− ξi)∆yi + ξi

s.t. 0≤∆yi ≤ 1 i= 1, . . . , n,
n∑
i=1

∆yi ≤ Γ.

By strong duality, this has the same objective value as its dual problem

min Γq+
n∑
i=1

ri +
n∑
i=1

ξi

s.t. q+ ri ≥ φi− ξi i= 1, . . . , n,

ri ≥ 0 i= 1, . . . , n,

q≥ 0.

Minimizing over w and b, this optimization problem becomes

min
n∑
i=1

ξi + Γq+
n∑
i=1

ri

s.t. q+ ri ≥ φi− ξi i= 1, . . . , n,

ξi = max{1− yi(wTxi− b),0} i= 1, . . . , n,

φi = max{1 + yi(w
Txi− b),0} i= 1, . . . , n,

ri ≥ 0 i= 1, . . . , n,

q≥ 0.

Reformulating the problem to specify the values of the variables ξi, φi with linear constraints yields

the desired result. �

Problem (19) is a mixed-integer optimization problem which is practically solvable.

5.3. Logistic Regression

Robustifying Problem (4) against the uncertainty set Uy gives

max
β,β0

min
∆y∈Uy

−
n∑
i=1

log

(
1 + e−yi(1− 2∆yi)(β

Txi +β0)
)
. (21)

Theorem 5. The robust counterpart to Problem (21) is

max
β,β0

−
n∑
i=1

log

(
1 + e−yi(β

Txi +β0)
)

+ Γµ+
n∑
i=1

νi

s.t. µ+ νi ≤ log

1 + e−yi(β
Txi +β0)

1 + eyi(β
Txi +β0)

 i= 1, . . . , n,

νi ≤ 0 i= 1, . . . , n,

µ≤ 0.

(22)



Bertsimas et al.: Robust Classification
20 Article submitted to INFORMS Journal on Optimization; manuscript no. IJO-2017-10-006.R2

Proof. Define the functions fi(∆yi) = − log

(
1 + e−yi(1− 2∆yi)(β

Txi +β0)
)

for i = 1, . . . , n.

Because ∆yi ∈ {0,1}, we can express fi(∆yi) as

fi(∆yi) = [f(1)− f(0)]∆yi + f(0)

= log

1 + e−yi(β
Txi +β0)

1 + eyi(β
Txi +β0)

∆yi− log

(
1 + e−yi(β

Txi +β0)
)
.

We can thus rewrite the inner minimization part of Problem (21) as

min
∆y∈Uy

n∑
i=1

log

1 + e−yi(β
Txi +β0)

1 + eyi(β
Txi +β0)

∆yi− log

(
1 + e−yi(β

Txi +β0)
) . (23)

Since the convex hull of Uy has integer extreme points, Problem (23) has the same objective as

its linear optimization relaxation (Bertsimas and Tsitsiklis 2008)

min
∆y

n∑
i=1

log

1 + e−yi(β
Txi +β0)

1 + eyi(β
Txi +β0)

∆yi− log

(
1 + e−yi(β

Txi +β0)
)

s.t. 0≤∆yi ≤ 1 i= 1, . . . , n,
n∑
i=1

∆yi ≤ Γ.

(24)

By strong duality, the optimal value to Problem (24) is equal to that of its dual problem

max −
n∑
i=1

log

(
1 + e−yi(β

Txi +β0)
)

+ Γµ+
n∑
i=1

νi

s.t. µ+ νi ≤ log

1 + e−yi(β
Txi +β0)

1 + eyi(β
Txi +β0)

 i= 1, . . . , n,

νi ≤ 0 i= 1, . . . , n,

µ≤ 0.

Substituting this back into Problem (21) in place of the inner minimization, it becomes a single

maximization problem, giving the stated result. �

This problem has a twice continuously differentiable concave objective function and constraints,

making it tractably solvable with an interior point method (Bertsekas 1999).

5.4. Optimal Decision Trees

Robustifying Problem (6) against the uncertainty set Uy gives a problem identical to Problem (6)

with the following constraints in place of constraints (6b), (6c), (6d), (6e), (6f), and (6g):

gk =
n∑
i=1

1− yi(1− 2∆yi)

2
zik k= 1, . . . ,K, (25a)
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hk =
n∑
i=1

1 + yi(1− 2∆yi)

2
zik k= 1, . . . ,K, (25b)

fk ≤ gk +M [wk + (1− ck)] ∀∆y ∈ Uy, k= 1, . . . ,K, (25c)

fk ≤ hk +M [(1−wk) + (1− ck)] ∀∆y ∈ Uy, k= 1, . . . ,K, (25d)

fk ≥ gk−M [(1−wk) + (1− ck)] ∀∆y ∈ Uy, k= 1, . . . ,K, (25e)

fk ≥ hk−M [wk + (1− ck)] ∀∆y ∈ Uy, k= 1, . . . ,K. (25f)

We refer to this optimization problem as Problem (25).

Theorem 6. The robust counterpart to Problem (25) is identical to Problem (25) with the

following constraints in place of constraints (25a), (25b) (25c), (25d), (25e), and (25f):

gk =
n∑
i=1

1− yi
2

zik k= 1, . . . ,K, (26a)

hk =
n∑
i=1

1 + yi
2

zik k= 1, . . . ,K, (26b)

fk ≤ gk−Γµ1,k−
n∑
i=1

ν1,ik +M [wk + (1− ck)] k= 1, . . . ,K, (26c)

fk ≤ hk−Γµ2,k−
n∑
i=1

ν2,ik +M [(1−wk) + (1− ck)] k= 1, . . . ,K, (26d)

fk ≥ gk + Γµ3,k +
n∑
i=1

ν3,ik−M [(1−wk) + (1− ck)] k= 1, . . . ,K, (26e)

fk ≥ hk + Γµ4,k +
n∑
i=1

ν4,ik−M [wk + (1− ck)] k= 1, . . . ,K, (26f)

µm,k + νm,ik ≥−yizik i= 1, . . . , n, k= 1, . . . ,K, m= 1,4, (26g)

µm,k + νm,ik ≥ yizik i= 1, . . . , n, k= 1, . . . ,K, m= 2,3, (26h)

µm,k, νm,ik ≥ 0 i= 1, . . . , n, k= 1, . . . ,K, m= 1, . . . ,4. (26i)

Proof. We can substitute (25a) into constraint (25c) to obtain

n∑
i=1

1− yi(1− 2∆yi)

2
zik ≥ fk−M [wk + (1− ck)] ∀∆y ∈ Uy, k= 1, . . . ,K,

n∑
i=1

1− yi
2

zik +
n∑
i=1

yizik∆yi ≥ fk−M [wk + (1− ck)] ∀∆y ∈ Uy, k= 1, . . . ,K.

Since this must hold for all ∆y ∈ Uy, this is equivalent to the following constraint:

n∑
i=1

1− yi
2

zik + min
∆y∈Uy

{ n∑
i=1

yizik∆yi

}
≥ fk−M [wk + (1− ck)] k= 1, . . . ,K.
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The convex hull of Uy has integer extreme points, so the value of the minimization term is equivalent

to the optimal value of its linear relaxation (for any fixed k)

min
n∑
i=1

yizik∆yi

s.t. 0≤∆yi ≤ 1 i= 1, . . . , n,
n∑
i=1

∆yi ≤ Γ.

By strong duality, this problem has the same optimal objective value as its dual

max Γµ1,k +
n∑
i=1

ν1,ik

s.t. µ1,k + ν1,ik ≤ yizik i= 1, . . . , n,

µ1,k, ν1,ik ≤ 0 i= 1, . . . , n.

Substituting this back into the original constraint gives

n∑
i=1

1− yi
2

zik + Γµ1,k +
n∑
i=1

ν1,ik ≥ fk−M [wk + (1− ck)] k= 1, . . . ,K,

µ1,k + ν1,ik ≤ yizik i= 1, . . . , n,

µ1,k, ν1,ik ≤ 0 i= 1, . . . , n.

We substitute back for the original definition of gk from (6b), and change the signs of µ and ν to

get

gk−Γµ1,k−
n∑
i=1

ν1,ik ≥ fk−M [wk + (1− ck)] k= 1, . . . ,K,

µ1,k + ν1,ik ≥−yizik i= 1, . . . , n,

µ1,k, ν1,ik ≥ 0 i= 1, . . . , n.

We can rearrange this to obtain constraint (26c), as well as parts of constraints (26g) and (26i).

We repeat this entire process identically for constraints (25d), (25e), and (25f) to achieve the

stated result. �

Similar to before, this remains a linear mixed-integer optimization problem, and so is practically

solvable. The label-robustification for Optimal Decision Trees also has a simple geometric inter-

pretation. Recall that in the model, gk is the number of points in node k with label yi = +1, hk is

the number of points in node k with label yi =−1, and fk is the number of points in node k that

are misclassified, which in the nominal case is simply min{gk, hk}. In the label-robust counterpart,

the extra terms in these constraints require feasible solutions to have strict separation between fk,

gk and hk. Indeed, we can obtain a feasible solution by setting µm,k = 1 and νm,ik = 0, which then

requires |gk −hk| ≥ 2Γ, and fk = min{gk, hk}+ Γ. This means that a feasible label-robust solution
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requires the majority class in each node to be a strict majority, and the size of this required sep-

aration is controlled by the robustness parameter Γ. Increasing Γ has the effect of increasing the

label purity of all nodes in the tree, since trees that do not have the required margin between gk

and hk at every node k in the tree are treated as being infeasible for the label-robust problem.

6. Robustness in Both Features and Labels

In this section, we consider applying the methods of Sections 4 and 5 simultaneously to construct

a new family of classifiers that are robust to uncertainty in both features and labels. We will

refer to this family as robust-in-both classifiers. To develop these classifiers, we simply expose the

classification problem to both feature-uncertainty with uncertainty set Ux, and label-uncertainty

with uncertainty set Uy. This is a natural extension of our previous methods to handle classification

problems which may have errors in both the features and labels of the training data. For example,

in the contraceptive method choice data set considered in Section 5, survey data is used to obtain

information on both the features (demographic and socio-economic characteristics) and labels

(contraceptive method choice), and both factors may be influenced by inaccurate reporting.

We present the reformulated robust counterparts below for soft-margin support vector machines,

logistic regression, and optimal decisions trees, which we refer to as the robust-in-both counterpart

for each method. The proofs are similar to the derivations of the robust counterparts in the previous

two sections, and are included in the Appendix.

Like both methods individually, the robust-in-both classifier has to select the robustness param-

eters ρ and Γ through validation. As per the individual cases, when we set ρ= Γ = 0, the problem

reduces to the nominal problem. Note also that if only one of ρ/Γ is zero, the problem reduces

to the label-robust/feature-robust problem respectively. This means that as part of the robust-in-

both validation process, we consider the models from the nominal, feature-robust and label-robust

classifiers in addition to the robust-in-both classifier, and then select the classifier among these

with the best validation accuracy. In this sense, the robust-in-both classifier is the strongest of all

the robust classifiers, since it selects in validation the best performing robust classifier of all those

we have considered.

6.1. Soft-Margin Support Vector Machines

Robustifying Problem (1) against both Ux and Uy gives the following robust optimization problem:

min
w,b

max
∆y∈Uy

max
∆X∈Ux

n∑
i=1

max{1− yi(1− 2∆yi)(w
T (xi + ∆xi)− b),0}. (27)
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Theorem 7. The robust counterpart to Problem (27) is

min
n∑
i=1

ξi + Γq+
n∑
i=1

ri

s.t. q+ ri ≥ φi− ξi i= 1, . . . , n,

ξi ≥ 1− yi(wTxi− b) + ρ‖w‖q∗ i= 1, . . . , n,

ξi ≤ 1− yi(wTxi− b) + ρ‖w‖q∗ +M(1− si) i= 1, . . . , n,

ξi ≤Msi i= 1, . . . , n,

φi ≥ 1 + yi(w
Txi− b) + ρ‖w‖q∗ i= 1, . . . , n,

φi ≤ 1 + yi(w
Txi− b) + ρ‖w‖q∗ +M(1− ti) i= 1, . . . , n,

φi ≤Mti i= 1, . . . , n,

ri, ξi, φi ≥ 0 i= 1, . . . , n,

q≥ 0,

s, t∈ {0,1}n.

(28)

where `q∗ is the dual norm of `q, and M is a sufficiently large constant.

The proof of Theorem 7 is straightforward, and it is provided in Appendix B.

Problem (28) is a mixed-integer optimization problem which is practically solvable.

6.2. Logistic Regression

Robustifying Problem (4) against both Ux and Uy gives the following robust optimization problem:

max
β,β0

min
∆y∈Uy

min
∆X∈Ux

−
n∑
i=1

log

(
1 + e−yi(1− 2∆yi)(β

T (xi + ∆xi) +β0)
)
. (29)

Theorem 8. The robust counterpart to Problem (29) is

max −
n∑
i=1

log

(
1 + e−yi(β

Txi +β0) + ρ‖β‖q∗
)

+ Γµ+
n∑
i=1

νi

s.t. µ+ νi ≤ log

1 + e−yi(β
Txi +β0) + ρ‖β‖q∗

1 + eyi(β
Txi +β0) + ρ‖β‖q∗

 i= 1, . . . , n,

νi ≤ 0 i= 1, . . . , n,

µ≤ 0.

(30)

where `q∗ is the dual norm of `q.

The proof of Theorem 8 can be found in Appendix B. It essentially applies the process in the

proof for feature-robust logistic regression, followed by the process in the proof for label-robustness

to obtain the final robust counterpart.
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Problem (30) is a maximization of a concave, twice continuously differentiable function in β and

β0 with constraints for any given ρ and Γ. Therefore, we can solve this problem using interior point

methods (Bertsekas 1999).

6.3. Optimal Decision Trees

Robustifying Problem (6) against both Ux and Uy gives a problem identical to Problem (6) with

the following exceptions:

• The constraints in (16) in place of constraints (6p) and (6q);

• The constraints in (25) in place of constraints (6b), (6c), (6d), (6e), (6f), and (6g).

Theorem 9. The robust counterpart to the above problem is identical to Problem (6) with the

following exceptions:

• The constraints in (17) in place of constraints (6p) and (6q);

• The constraints in (26) in place of constraints (6b), (6c), (6d), (6e), (6f), and (6g).

The proof of Theorem 9 is given in Appendix B, and the complete robust-in-both formulation

is stated in full.

This resulting problem is still a linear mixed-integer optimization problem, and so remains

practically solvable.

7. Computational Experiments with Synthetic Data Sets

In this section, we evaluate the performance of robust methods on synthetically-generated data

sets in order to understand the relative performance of the different types of robustness and also

how robust methods compare to the regularized methods used in practice. In these experiments,

we run SVM and logistic regression methods to recover the separating hyperplane classifier on

a synthetic example. We focus on SVM and logistic regression in this analysis because both of

these classification models are suitable given the data generation process and have widely used

regularized methods to compare against.

7.1. Experimental Setup

The experiment uses data in R2. The data is generated synthetically in three parts:

1. 25 points are generated as multivariate random normal, N(1.5e, I), where e is the vector of

ones and I is the identity matrix. These points are given the label +1.

2. 25 points are generated as multivariate random normal, N(−1.5e, I) and labeled −1.

3. 10 outlier points are introduced as multivariate random normal, N(0,3I), where 0 is the vector

of zeros. The labels are randomly generated as either −1 or +1.

We split this data 75%/25% into training and validation sets, which we used to tune the param-

eters for the regularized and robust methods. We included relatively few points in the training and
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Figure 2 Example of synthetically-generated data in two dimensions alongside the true generating hyperplane
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validation sets to make the classification task nontrivial given the simple data generation process.

To create the test set, we generated 10,000 points in the same way as each major cluster of points

(items 1 and 2 above).

An example of a data set generated according to this procedure is shown in Figure 2. We can

see that there are two distinct clusters of points, with some scattered noise centered in the area

between the two clusters. By the symmetry of this data generation process, we can see that the

true hyperplane separating the two clusters of points is given by the equation eTx = 0, also shown

in Figure 2. The goal of the experiment is to determine how closely the various methods can recover

this truth in the data in the presence of added noise via the addition of these outlier points. In

particular, we are interested in the following two measures:

• Accuracy: We measure accuracy by reporting the out-of-sample error of the trained classifiers

on the larger test set.

• Similarity: To evaluate the ability of each method to recover the truth in the data, we measure

the norm of the difference between the separating hyperplane generated by the methods and

the true hyperplane (eTx = 0).

7.2. Classification Methods

For these experiments, we consider SVM and logistic regression, as these both create classifiers

with a single hyperplane, which matches the truth in the synthetic data. In both cases, we compare

the nominal method, the regularized method, and all three robust methods (features, labels and

both). Each method was implemented in the Julia programming language, a rapidly maturing

language designed for high-performance scientific computing (Bezanson et al. 2014). The optimiza-

tion problems required by each method were formulated in JuMP, a state-of-the-art library for

algebraic modeling and mathematical optimization (Lubin and Dunning 2015). The commercial

solver Gurobi (Gurobi Optimization Inc. 2015) was used to solve the linear and mixed-integer
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optimization problems for SVM, and the open source solver Ipopt (Wächter and Biegler 2006)

was used to solve the convex optimization problems for logistic regression.

To ensure a fair comparison, we use the `1 norm in the regularized methods and set q =∞ for

the feature uncertainty set so that the norms in the robust methods are also `1 norms. For each

method, the values of ρ and Γ were selected through validation when using the corresponding

robust classifiers.

7.3. Results

This experiment was repeated 2000 times, and we present the means and standard errors of the two

measures for each method in Table 1. For SVM, the nominal and regularized methods have roughly

the same power in recovering the truth in the data, after accounting for the standard errors. The

feature-robust method improves upon the nominal method in both measures, and the label-robust

method further improves upon both measures. The best performance in both measures is obtained

when we consider both types of robustness simultaneously in the robust-in-both method, and this

method improves significantly upon both methods that consider only a single type of robustness.

For logistic regression, we see that the nominal method performs the worst in both measures. The

regularized method and our feature-robust method are roughly comparable, with the regularized

method having a slight edge, and both offering a small improvement over the nominal method.

As with SVM, the label-robust method offers significant improvement in both measures, and the

robust-in-both method adds a further slight improvement on top of label-robust, showing that

considering both types of robustness leads to additional power over considering just a single type.

In Table 2, we break down the results by percentile in out-of-sample error, and we report the

10th,20th, . . . ,90th percentiles for each method. We find that robust methods match or outperform

nominal and regularized methods across the board, and this relative improvement increases as

the percentile increases. This follows our expectation that these robust methods reliably produce

high quality classifiers, which protects us from giving biased predictions in worst case scenarios. In

Table 1 Performance results for synthetic data experiments

Method

SVM Logistic Regression

Out-of-sample
error (%)

Distance from
truth

Out-of-sample
error (%)

Distance from
truth

Nominal 2.571± 0.021 0.357± 0.004 2.717± 0.023 0.388± 0.004
Regularized 2.643± 0.027 0.357± 0.004 2.694± 0.022 0.384± 0.004
Features 2.516± 0.020 0.345± 0.004 2.701± 0.023 0.386± 0.004
Labels 2.396± 0.018 0.320± 0.004 2.450± 0.019 0.332± 0.004
Both 2.363± 0.018 0.310± 0.004 2.436± 0.019 0.329± 0.004

For each method, we report the mean and standard error over 2000 runs for both the out-of-sample

error and the distance of the generated classifier from the truth in the data.



Bertsimas et al.: Robust Classification
28 Article submitted to INFORMS Journal on Optimization; manuscript no. IJO-2017-10-006.R2

Table 2 Out-of-sample error results by percentile for synthetic data
experiments

Percentile

Classifier Method 90th 70th 50th 30th 10th

SVM

Nominal 3.771 2.695 2.275 1.985 1.774
Regularized 3.941 2.700 2.235 1.975 1.775
Features 3.651 2.650 2.225 1.965 1.755
Labels 3.381 2.460 2.125 1.915 1.755
Both 3.325 2.425 2.100 1.890 1.740

Logistic regression

Nominal 4.096 2.940 2.400 2.050 1.795
Regularized 4.041 2.910 2.385 2.045 1.795
Features 4.050 2.917 2.393 2.043 1.790
Labels 3.552 2.565 2.175 1.928 1.745
Both 3.515 2.550 2.165 1.920 1.745

the worst case scenario presented (90th percentile out-of-sample error), robust-in-both SVM and

logistic regression yield out-of-sample errors of 3.325% and 3.515%, while regularized methods give

out-of-sample errors of 3.941% and 4.041%, respectively.

From these experiments on synthetic data, we conclude that our robust classifiers can effectively

deal with data that has been contaminated with noise. For both SVM and logistic regression, we

observe that the robust methods offer significant improvements over the nominal and regularized

methods, both in their accuracy and in their ability to correctly recover the truth in the data. Fur-

ther, we found that the robust-in-both methods which combine robustness in the features and labels

performed stronger than the feature-robust and label-robust methods individually, demonstrating

that there is value in considering both types of uncertainty simultaneously.

8. Computational Experiments with Real-world Data Sets

In this section, we report on a series of comprehensive computational benchmarks to compare robust

methods to their nominal counterparts. We also explore problem characteristics which influence

the performance gain of robust methods, and derive a simple decision rule recommending when

robust classification should be applied.

8.1. Experimental Setup

In order to comprehensively report performance of the robust classification methods on real data

sets, we tested the accuracy of these methods on a selection of 75 problems from the UCI Machine

Learning Repository (Lichman 2013). The data sets were selected to give a variety of problem sizes

and difficulties to form a representative sample of real-world problems, with the largest data set

having n= 245,057 observations, and the highest number of features being p= 857.

To obtain a binary classification problem for each data set, we consider the one-vs.-rest problem

of predicting the occurrence of the first class in the data set. Each data set was split into three
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parts: the training set (60%), the validation set (20%) and the testing set (20%). The training

set was used to train each classifier for a variety of combinations of input parameters. For each

combination of parameters, the misclassification error on the validation set was calculated, and this

was used to select the best combination of parameters for each classifier. Finally, the classifier was

trained using these best parameters on the combined training and validation sets, before reporting

the out-of-sample misclassification error on the testing set. All methods were trained, validated,

and tested on the same random splits, and computational experiments were repeated five times

for each data set with different splits. For each data set and classification method we report the

average out-of-sample accuracy across all five splits.

8.2. Classification Methods

In these real-world experiments, we consider all three classification methods: SVM, logistic regres-

sion, and decision trees. We set q=∞ for all of the feature-robust and robust-in-both uncertainty

sets, so that all the norms in the robust methods are `1. The implementations for SVM and logistic

regression are identical to those used in the synthetic experiments, which are described in Sec-

tion 7.1. We implement Optimal Decision Trees using the JuMP software package in Julia, and the

commercial solver Gurobi (Gurobi Optimization Inc. 2015) was used to solve the mixed-integer

optimization problems.

As in the other two methods, for Optimal Decision Trees we select the values of ρ and Γ through

validation when using the corresponding robust classifier. During validation, we also select the com-

plexity parameter (cp), the minimum number of points per node (minbucket), and the exploration

depth around the warm start solution (explorationdepth). See Bertsimas and Dunn (2017) for a

full description of these parameters. We compare the robust counterparts of the Optimal Decision

Tree problem to the CART heuristic rather than the nominal Optimal Decision Tree problem. This

allows us to provide a benchmark of the robust methods against the state-of-the-art methods that

are widely used today. For the CART method we used the rpart package (Therneau et al. 2015)

in the R programming language (R Core Team 2015).

Table 4 shows the out-of-sample accuracy performance of each classification method and its

robust counterparts on all selected data sets. For each data set, the best result (or multiple in the

case of ties) for each method is indicated in bold, and the best method overall for the data set is

underlined.

8.3. Pairwise Comparisons

First, we present the results comparing individual robust classification methods against their nom-

inal counterparts.
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Figure 3 Pairwise comparisons between nominal and individual robust methods
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Note. For each type of robustness, the plots compare that particular robust method and the nominal method and

show the number of data sets for which each had the highest out-of-sample accuracy.

Table 3 Pairwise comparisons of robust classification methods against
their nominal counterparts

Nominal Method Robustness Type Wins Losses Ties

SVM
Features 37 19 19
Labels 35 18 22
Both 39 20 16

Logistic Regression
Features 34 20 21
Labels 35 21 19
Both 40 20 15

CART
Features 36 23 16
Labels 33 24 18
Both 33 24 18
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Table 4 Out-of-sample accuracy averaged across five seeds for each classification method and its robust counterparts on all data sets

Data Set Information SVM Logistic Regression CART

UCI Data Set Name n p Nominal Features Labels Both Nominal Features Labels Both Nominal Features Labels Both

acute-inflammations-1 120 7 1.0000 1.0000 1.0000 0.9083 1.0000 1.0000 1.0000 1.0000 0.9583 1.0000 1.0000 1.0000
acute-inflammations-2 120 7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9750 1.0000 0.9833 1.0000
arrhythmia 68 280 0.5692 0.7077 0.6923 0.6308 0.6923 0.6923 0.6923 0.6923 0.6769 0.7077 0.6923 0.7692
balance-scale 625 5 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200
banknote-authentication 1372 5 0.9912 0.9869 0.9927 0.9912 0.9920 0.9905 0.9927 0.9905 0.9533 0.9642 0.9635 0.9635
blood-transfusion 748 5 0.7638 0.7638 0.7638 0.7638 0.7826 0.7812 0.7785 0.7812 0.7799 0.7893 0.7799 0.7799
breast-cancer 683 10 0.9500 0.9574 0.9559 0.9559 0.9559 0.9574 0.9544 0.9574 0.9338 0.9456 0.9426 0.9426
breast-cancer-diagnostic 569 31 0.9351 0.9596 0.9439 0.9614 0.9561 0.9684 0.9526 0.9684 0.9281 0.9053 0.9333 0.9018
breast-cancer-prognostic 194 33 0.7128 0.7128 0.7128 0.7179 0.7128 0.7231 0.7692 0.7590 0.7436 0.7385 0.7436 0.7538
car-evaluation 1728 16 0.8000 0.7930 0.7832 0.7826 0.8006 0.7925 0.7994 0.7925 0.8603 0.8551 0.8597 0.8597
chess-king-rook-vs-king 28056 35 0.9004 0.9004 0.9004 0.9004 0.9004 0.9004 0.9004 0.9004 0.9004 0.9004 0.9004 0.9004
chess-king-rook-vs-king-pawn 3196 38 0.9743 0.9731 0.9743 0.9687 0.9756 0.9750 0.9734 0.9743 0.9693 0.9693 0.9693 0.9693
climate-model-crashes 540 19 0.9500 0.9593 0.9537 0.9574 0.9500 0.9537 0.9556 0.9537 0.9259 0.9241 0.9296 0.9241
cnae-9 1080 857 0.9750 0.9861 0.9685 0.9481 0.9806 0.9796 0.9796 0.9824 0.9657 0.9722 0.9704 0.9694
congressional-voting-records 232 17 0.9565 0.9870 0.9783 0.9826 0.9739 0.9826 0.9739 0.9826 0.9870 0.9826 0.9870 0.9870
connectionist-bench 990 11 0.9758 0.9758 0.9778 0.9768 0.9747 0.9778 0.9737 0.9768 0.9747 0.9737 0.9727 0.9727
connectionist-bench-sonar 208 61 0.7073 0.7707 0.7561 0.7561 0.7463 0.7512 0.7756 0.7659 0.7268 0.7317 0.7122 0.7317
contraceptive-method-choice 1473 12 0.6776 0.6769 0.6789 0.6755 0.6714 0.6769 0.6748 0.6776 0.6891 0.6980 0.6986 0.6986
credit-approval 653 38 0.8508 0.8569 0.8492 0.8585 0.8615 0.8615 0.8600 0.8631 0.8569 0.8415 0.8554 0.8415
cylinder-bands 277 485 0.5564 0.7164 0.5891 0.6691 0.6727 0.6727 0.6727 0.6727 0.6764 0.6800 0.6691 0.7018
dermatology 358 35 0.9662 0.9887 0.9972 0.9803 1.0000 1.0000 1.0000 1.0000 0.9887 0.9887 0.9859 0.9887
echocardiogram 61 7 0.7167 0.7000 0.6833 0.6833 0.7833 0.7500 0.7833 0.7333 0.7500 0.7167 0.7333 0.7500
ecoli 336 8 0.9582 0.9522 0.9582 0.9582 0.9612 0.9612 0.9612 0.9582 0.9493 0.9343 0.9284 0.9284
fertility 100 13 0.8700 0.9000 0.8800 0.9000 0.8700 0.9000 0.8800 0.9000 0.9000 0.8400 0.8900 0.8400
flags 194 60 0.6923 0.8769 0.7949 0.8205 0.7641 0.8564 0.8462 0.8564 0.8821 0.8872 0.8923 0.9026
glass-identification 214 10 0.7163 0.7070 0.7395 0.7256 0.7116 0.7209 0.7488 0.7349 0.7674 0.7814 0.7860 0.7860
haberman-survival 306 4 0.7279 0.7344 0.7344 0.7344 0.7410 0.7311 0.7344 0.7311 0.7049 0.6623 0.6820 0.6787
hayes-roth 132 5 0.6846 0.6846 0.6769 0.6692 0.6615 0.8000 0.6769 0.7923 0.8154 0.8154 0.7385 0.7385
heart-disease-cleveland 297 19 0.8407 0.8339 0.8339 0.8203 0.8305 0.8271 0.8339 0.8305 0.7559 0.8000 0.7695 0.8068
hepatitis 80 20 0.8500 0.8500 0.8000 0.8125 0.8375 0.8250 0.8625 0.8250 0.8125 0.7875 0.8250 0.7875
hill-valley 606 101 0.5884 0.9620 0.5884 0.9620 0.9934 0.9636 0.9421 0.9636 0.5504 0.5504 0.5504 0.5504
hill-valley-noise 606 101 0.8612 0.8545 0.8628 0.8512 0.8463 0.8876 0.8083 0.8876 0.4744 0.4992 0.4942 0.4959
image-segmentation 210 20 0.9286 0.9857 0.9667 0.9476 0.9762 0.9762 0.9762 0.9762 0.9476 0.9810 0.9714 0.9810
indian-liver-patient 579 11 0.7155 0.7155 0.7155 0.7155 0.7172 0.7155 0.7224 0.7224 0.6931 0.6862 0.6914 0.6845
ionosphere 351 35 0.8743 0.8743 0.8514 0.8743 0.8829 0.8743 0.8571 0.8714 0.8971 0.9086 0.8914 0.9086
iris 150 5 1.0000 1.0000 1.0000 0.9800 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9867 1.0000
letter-recognition 20000 17 0.9921 0.9922 0.9923 0.9923 0.9907 0.9907 0.9907 0.9908 0.9896 0.9896 0.9896 0.9896
libras-movement 360 91 0.9056 0.9694 0.9611 0.9694 0.9444 0.9639 0.9528 0.9639 0.9333 0.9361 0.9528 0.9389
magic-gamma-telescope 19020 11 0.7922 0.7923 0.7924 0.7924 0.7916 0.7919 0.7920 0.7919 0.8364 0.8364 0.8367 0.8367
mammographic-mass 830 11 0.8193 0.8072 0.8000 0.8060 0.8289 0.8289 0.8217 0.8217 0.8289 0.8145 0.8217 0.8108
monks-problems-1 124 12 0.8240 0.7360 0.8000 0.8000 0.7440 0.7680 0.7760 0.7920 0.8080 0.8400 0.8400 0.8400
monks-problems-2 169 12 0.6118 0.6176 0.6118 0.6176 0.5647 0.6235 0.6176 0.6235 0.6118 0.6294 0.6353 0.6353
monks-problems-3 122 12 0.9167 0.9333 0.9167 0.9333 0.8500 0.9250 0.9333 0.9250 0.8917 0.9333 0.9333 0.9333

For each data set, the best result (or multiple in the case of ties) for each method is indicated in bold, and the best method overall for the data set is underlined.
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Table 4 (Cont.) Out-of-sample accuracy averaged across five seeds for each classification method and its robust counterparts on all data sets

Data Set Information SVM Logistic Regression CART

UCI Data Set Name n p Nominal Features Labels Both Nominal Features Labels Both Nominal Features Labels Both

mushroom 5644 77 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9894 0.9901 0.9894 0.9894
nursery 12960 20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7910 0.7910
optical-recognition 3823 65 0.9929 0.9961 0.9974 0.9966 0.9942 0.9969 0.9976 0.9971 0.9830 0.9830 0.9830 0.9830
ozone-level-detection-eight 1847 73 0.9301 0.9301 0.9301 0.9295 0.9312 0.9322 0.9295 0.9317 0.9322 0.9322 0.9328 0.9328
ozone-level-detection-one 1848 73 0.9545 0.9702 0.9561 0.9702 0.9561 0.9702 0.9686 0.9702 0.9702 0.9702 0.9702 0.9702
parkinsons 195 22 0.8564 0.8359 0.8513 0.8615 0.8410 0.8103 0.8462 0.8205 0.8615 0.8410 0.8821 0.8410
pen-based-recognition 7494 17 0.9904 0.9889 0.9901 0.9891 0.9903 0.9899 0.9897 0.9897 0.9849 0.9893 0.9848 0.9848
pima-indians-diabetes 768 9 0.7765 0.7778 0.7765 0.7791 0.7778 0.7739 0.7791 0.7752 0.7542 0.7373 0.7477 0.7294
planning-relax 182 13 0.7222 0.7222 0.7222 0.7222 0.6778 0.6944 0.6944 0.7000 0.6889 0.6833 0.6889 0.6556
poker-hand 25010 11 0.5010 0.5023 0.5028 0.5023 0.5028 0.5006 0.5018 0.5000 0.5913 0.5913 0.5913 0.5913
post-operative-patient 87 14 0.6235 0.6471 0.7059 0.7059 0.6118 0.6353 0.6588 0.6588 0.6824 0.6235 0.6471 0.6235
qsar-biodegradation 1055 42 0.8749 0.8758 0.8777 0.8758 0.8730 0.8730 0.8701 0.8682 0.7943 0.8142 0.8104 0.8114
seeds 210 8 0.9524 0.9429 0.9524 0.9429 0.9571 0.9524 0.9524 0.9476 0.8429 0.8762 0.8667 0.9000
seismic-bumps 2584 21 0.9342 0.9342 0.9342 0.9342 0.9319 0.9327 0.9327 0.9327 0.9342 0.9342 0.9342 0.9342
skin-segmentation 245057 4 0.9281 0.9348 0.9328 0.9366 0.9184 0.9184 0.9345 0.9345 0.9656 0.9656 0.9656 0.9656
soybean-large 266 63 0.7736 0.8830 0.8642 0.8717 0.7962 0.8792 0.9019 0.8868 0.8830 0.8642 0.8491 0.8491
soybean-small 47 38 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
spambase 4601 58 0.9257 0.9265 0.9252 0.9265 0.9230 0.9248 0.9246 0.9246 0.8896 0.8913 0.8926 0.8926
spect-heart 80 23 0.5875 0.7125 0.6500 0.7125 0.6750 0.7875 0.6625 0.7625 0.7625 0.7750 0.7750 0.7750
spectf-heart 80 45 0.5625 0.6750 0.6625 0.6500 0.5875 0.7500 0.5375 0.7625 0.7625 0.7250 0.8000 0.7375
statlog-project-german-credit 1000 49 0.7300 0.7420 0.7380 0.7400 0.7380 0.7470 0.7400 0.7400 0.7250 0.7100 0.7030 0.7150
statlog-project-landsat-satellite 4435 37 0.9811 0.9813 0.9822 0.9820 0.9833 0.9826 0.9833 0.9824 0.9477 0.9484 0.9511 0.9511
teaching-assistant-evaluation 151 53 0.7000 0.6733 0.6867 0.6733 0.7133 0.7067 0.7133 0.7067 0.6467 0.6733 0.6267 0.7067
thoracic-surgery 470 25 0.8426 0.8511 0.8426 0.8511 0.8213 0.8489 0.8362 0.8468 0.8511 0.8426 0.8511 0.8426
thyroid-disease-ann-thyroid 3772 22 0.9920 0.9926 0.9918 0.9915 0.9934 0.9934 0.9936 0.9934 0.9915 0.9971 0.9971 0.9971
thyroid-disease-new-thyroid 215 6 0.8977 0.8837 0.8977 0.8884 0.8977 0.8977 0.8977 0.8977 0.8884 0.9023 0.9302 0.9116
tic-tac-toe-endgame 958 19 0.9801 0.9801 0.9801 0.9801 0.9801 0.9801 0.9801 0.9801 0.9005 0.9026 0.8995 0.8995
wall-following-robot-2 5456 3 0.6220 0.6544 0.5415 0.5553 0.6081 0.6114 0.6609 0.6609 0.9879 1.0000 1.0000 1.0000
wall-following-robot-24 5456 5 0.6235 0.6544 0.6420 0.6561 0.6301 0.6348 0.6565 0.6563 0.9879 1.0000 1.0000 1.0000
wine 178 14 0.9657 0.9657 0.9714 0.9657 0.9714 0.9714 0.9943 0.9943 0.9257 0.9429 0.9371 0.9371
yeast 1484 9 0.6902 0.6902 0.6902 0.6902 0.6801 0.6828 0.6929 0.6929 0.7286 0.7219 0.7219 0.7219
zoo 101 17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

For each data set, the best result (or multiple in the case of ties) for each method is indicated in bold, and the best method overall for the data set is underlined.
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Figure 4 Comparison of the number of data sets for which the nominal and robust-in-both approaches for each

method give the highest out-of-sample accuracy
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Results for the three nominal methods and all robust variations are summarized in Figure 3.

Each pair of bars in the graph represents a pairwise comparison between a specific robust method

and its nominal counterpart. Each bar represents the number of data sets for which the either the

robust or nominal method produced the single strongest classifier, based on out-of-sample accuracy.

We see that for each classification method, all types of robustness have a lead over the nominal

ones. In the case of logistic regression and SVM, robust-in-both produces most improvement in the

number of correctly classified data sets. However for CART, it is the feature robust method that is

most effective in improving classification over the nominal counterpart. Because the robust-in-both

method encompasses the individual feature and label robust methods, this result could be due to

difficulties in validation where the selected combination of robustness parameters did not lead to

better out-of-sample performance than the individual robust methods. The exact counts of wins,

ties, and losses for each robust counterpart compared to the corresponding nominal method are

shown in Table 3.

Next, we consider the best of the nominal and robust-in-both methods across SVM, logistic

regression, and CART. For each data set, we recorded which of these six methods had the highest

out-of-sample accuracy. Figure 4 shows the breakdown of counts for data sets in which there is

a unique highest out-of-sample accuracy. All of the six methods yield the unique highest out-of-

sample accuracy for certain data sets, which indicates that each type of classifier is able to exploit

different aspects of the data set in their own ways to potentially lead to higher quality solutions.

In all cases, the robust counterpart produced the highest number of uniquely optimal solutions.
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Table 5 Improvement due to robustness by baseline in-sample accuracy, comparing the baseline
method to the corresponding robust-in-both classifier

Nominal Method Nominal Accuracy Wins Losses Ties Robust Improvement

SVM

0–60% 6 0 0 10.7± 5.6%
60–70% 5 3 1 2.2± 1.9%
70–80% 8 5 3 0.9± 1.1%
80–90% 6 3 1 0.3± 0.5%
90–100% 14 9 11 0.0± 0.4%

Logistic Regression

0–60% 2 1 0 7.7± 5.2%
60–70% 10 0 0 4.5± 1.2%
70–80% 8 7 0 1.2± 1.0%
80–90% 4 5 1 1.1± 0.9%
90–100% 16 7 14 0.2± 0.1%

CART

0–60% 1 0 2 0.7± 0.7%
60–70% 1 0 0 2.4±−%
70–80% 7 8 2 0.1± 0.9%
80–90% 7 8 0 −0.3± 0.9%
90–100% 17 8 14 −0.1± 0.6%

8.4. Predicting the Effectiveness of Robust Classification

Thus far, we have demonstrated the strength of robust methods compared to their nominal coun-

terparts over the set of 75 problems from the UCI Machine Learning Repository. For machine

learning practitioners, we would also like to provide guidance about when it is worthwhile to use

robust classification methods in practical applications. In this section, we consider the problem of

predicting whether or not a robust classifier is likely to improve out-of-sample accuracy relative

to the nominal method, using only the dimension of the training data and the accuracy of the

nominal method on these data. Note that we consider in-sample nominal accuracy because this

is an attribute of the training problem, and therefore is available at the validation stage when

selecting the final classification method.

First we consider the influence of nominal in-sample accuracy in isolation. Table 5 shows the

improvement in out-of-sample accuracy of robust-in-both methods over their nominal counter-

parts for different ranges of nominal in-sample accuracy. We define the robust improvement as the

absolute difference in out-of-sample accuracy between the methods, that is the accuracy of the

robust-in-both method less the accuracy of the nominal method. For instance, if the robust-in-both

and nominal methods had accuracies of 84.7% and 81.3%, respectively, the robust improvement

would be +3.4%.

The most significant result is for data sets where nominal SVM has in-sample accuracy below

60%. For these 6 problems, robust-in-both SVM improves upon the out-of-sample accuracy in

every instance, and yields an average robust improvement of 10.7%. For logistic regression and

SVM, we see that as the nominal accuracy increases, both the proportion of robust-in-both wins
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Table 6 Improvement due to robustness by baseline in-sample accuracy and dimension of points,
comparing the nominal method to the corresponding robust-in-both classifier

Baseline Method Region Wins Losses Ties Robust Improvement

Nominal SVM
Above 14 4 3 5.3± 1.9%
Below 25 16 13 −0.2± 0.3%

Nominal
Logistic Regression

Above 17 2 1 4.0± 1.0%
Below 23 18 14 0.4± 0.3%

Nominal
Optimal Decision Trees

Above 7 3 4 1.4± 0.8%
Below 17 25 19 −0.7± 0.4%

CART
Above 9 3 2 1.3± 0.9%
Below 24 21 16 −0.3± 0.5%

Region Above refers to the top-left sections in Figure 5 (high data dimension, low baseline accu-

racy); Region Below refers to the bottom-right sections in Figure 5 (low data dimension, high baseline
accuracy).

and the robust improvement in accuracy decrease. For CART, the robust improvement is largely

independent of the nominal accuracy, although the win proportion is higher for problems with

nominal accuracy in the range of 90% to 100%. This suggests that nominal in-sample accuracy by

itself is not a strong predictor of robust effectiveness for CART methods. However, note that there

are only four data sets with a nominal CART accuracy below 70%, the region where the other

robust methods are strongest.

Next, we consider the combined influence of nominal in-sample accuracy and dimension of data

points on the robust improvement. Figure 5 plots the winning method against these two attributes

of the training problem. We have constructed a dividing line which is identical on all three plots

that partitions the points into two regions. This line follows the equation log10(p) = 0.05a− 2.5,

where a is the in-sample accuracy of the nominal method on the data set, p is the dimension

of the data set, and the coefficients 0.05 and 2.5 were selected manually. In Table 6 we present

a breakdown of the relative performance of the nominal and robust-in-both methods in the two

regions. For all three classifiers, robust methods beat nominal methods for a majority of data sets

in the region of lower nominal accuracy and high dimensionality (above the dividing line). In this

region, we see significant average improvements in out-of-sample accuracy of 5.3% for SVM, 4.0%

for logistic regression, and 1.3% for CART. Below the dividing line, we observe that robust methods

are still competitive with nominal methods, with neither offering a significant advantage.

We also include in Table 6 a comparison of robust-in-both Optimal Decision Trees to nominal

Optimal Decision Trees. Previously, we have only considered the performance relative to CART in

order to provide a strong benchmark against the state-of-the-art methods, but it is also insightful

to directly compare the robust formulation to its nominal counterpart. Below the dividing line,

the robust-in-both approach is not as strong compared to the Optimal Decision Trees as it is

compared to CART. This can be attributed to the fact that the Optimal Decision Trees are a
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Figure 5 Plots of winning method (nominal vs. robust-in-both) by the baseline in-sample accuracy and

dimension of points in each data set.

(a) Nominal SVM vs. robust-in-both SVM
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(b) Nominal logistic regression vs. robust-in-both logistic regression
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(c) CART vs. robust-in-both Optimal Decision Trees
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Note. The dashed line divides each plot into two regions with different levels of robustness gain. Nominal and robust-

in-both wins are indicated by • and ×, respectively.
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stronger classification method than CART, and thus provide a stronger nominal baseline. However,

we see that above the line, the relative improvement of robust-in-both Optimal Decision Trees

over Optimal Decision Trees is very similar to their improvement over CART, with an average

improvement in out-of-sample accuracy of 1.4%. This therefore shows that the dividing line is a

strong predictor for when robust methods perform strongest relative to nominal methods, even in

the presence of a significantly stronger nominal method.

It seems natural that the data dimension and nominal accuracy are likely indicative of the

problem difficulty. This implies that robust methods are most beneficial for harder problems. We

also expect robust methods to perform strongest on noisy data. Together, this offers evidence that

problem difficulty and data uncertainty are correlated, a result that is consistent with intuition.

Based on the dividing line used earlier, we present the following decision rule to address the task

of predicting the effectiveness of robust methods over nominal:

log10(p)≥ 0.05a− 2.5, (31)

where p is the dimension of the data points, and a is the nominal in-sample accuracy. If this

relationship is satisfied, the data set falls into the “Above” region of Table 6, and therefore the

robust classification methods are highly likely to offer significant accuracy improvements over their

nominal counterparts.

This demonstrates that we can predict with high-accuracy a significant improvement in out-

of-sample accuracy when using robust methods for classification problems with high-dimensional

data and low nominal accuracy. This has large practical importance for machine learning; given a

real-world classification problem, (31) gives a simple but strong recommendation for when to use

robust classification in place of nominal SVM, logistic regression, or CART.

8.5. Comparison with Regularized Methods

To demonstrate the added value of our principled framework for modeling data uncertainty with

robust optimization, we compare the robust classification methods to other popular methods that

exhibit robust properties indirectly.

Table 7 Out-of-sample accuracy averaged across five seeds for each method using
both regularized and robust-in-both methods on all data sets

Data Set Information SVM Logistic Regression

UCI Data Set Name n p Regularized Robust Regularized Robust

acute-inflammations-1 120 7 1.0000 0.9083 1.0000 1.0000
acute-inflammations-2 120 7 1.0000 1.0000 1.0000 1.0000
arrhythmia 68 280 0.6154 0.6308 0.7538 0.6923
balance-scale 625 5 0.9200 0.9200 0.9200 0.9200
banknote-authentication 1372 5 0.9869 0.9912 0.9855 0.9905

For each data set, the best result (or both in the case of a tie) for each method is
indicated in bold.
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Table 7 (Cont.) Out-of-sample accuracy averaged across five seeds for each method
using both regularized and robust-in-both methods on all data sets

Data Set Information SVM Logistic Regression

UCI Data Set Name n p Regularized Robust Regularized Robust

blood-transfusion 748 5 0.7638 0.7638 0.7664 0.7812
breast-cancer 683 10 0.9679 0.9559 0.9664 0.9574
breast-cancer-diagnostic 569 31 0.9719 0.9614 0.9684 0.9684
breast-cancer-prognostic 194 33 0.7692 0.7179 0.7692 0.7590
car-evaluation 1728 16 0.7977 0.7826 0.7936 0.7925
chess-king-rook-vs-king 28056 35 0.9004 0.9004 0.9004 0.9004
chess-king-rook-vs-king-pawn 3196 38 0.9743 0.9687 0.9756 0.9743
climate-model-crashes 540 19 0.9611 0.9574 0.9556 0.9537
cnae-9 1080 857 0.9769 0.9481 0.9713 0.9824
congressional-voting-records 232 17 0.9787 0.9826 0.9574 0.9826
connectionist-bench 990 11 0.9737 0.9768 0.9707 0.9768
connectionist-bench-sonar 208 61 0.7268 0.7561 0.7073 0.7659
contraceptive-method-choice 1473 12 0.6800 0.6755 0.6814 0.6776
credit-approval 653 38 0.8626 0.8585 0.8733 0.8631
cylinder-bands 277 485 0.7200 0.6691 0.6182 0.6727
dermatology 358 35 0.9915 0.9803 1.0000 1.0000
echocardiogram 61 7 0.7000 0.6833 0.6667 0.7333
ecoli 336 8 0.9791 0.9582 0.9731 0.9582
fertility 100 13 0.8500 0.9000 0.8400 0.9000
flags 194 60 0.8872 0.8205 0.8615 0.8564
glass-identification 214 10 0.7302 0.7256 0.7395 0.7349
haberman-survival 306 4 0.7279 0.7344 0.7180 0.7311
hayes-roth 132 5 0.8519 0.6692 0.8074 0.7923
heart-disease-cleveland 297 19 0.8305 0.8203 0.8441 0.8305
hepatitis 80 20 0.8375 0.8125 0.8125 0.8250
hill-valley 606 101 0.8364 0.9620 0.9884 0.9636
hill-valley-noise 606 101 0.8132 0.8512 0.8678 0.8876
image-segmentation 210 20 0.9905 0.9476 0.9810 0.9762
indian-liver-patient 579 11 0.7155 0.7155 0.7224 0.7224
ionosphere 351 35 0.8743 0.8743 0.8943 0.8714
iris 150 5 1.0000 0.9800 1.0000 1.0000
letter-recognition 20000 17 0.9916 0.9923 0.9904 0.9908
libras-movement 360 91 0.9694 0.9694 0.9583 0.9639
magic-gamma-telescope 19020 11 0.7848 0.7924 0.7862 0.7919
mammographic-mass 830 11 0.8120 0.8060 0.8301 0.8217
monks-problems-1 124 12 0.6960 0.8000 0.6560 0.7920
monks-problems-2 169 12 0.5824 0.6176 0.5882 0.6235
monks-problems-3 122 12 0.9360 0.9333 0.9360 0.9250
mushroom 5644 77 1.0000 1.0000 1.0000 1.0000
nursery 12960 20 1.0000 1.0000 1.0000 1.0000
optical-recognition 3823 65 0.9956 0.9966 0.9958 0.9971
ozone-level-detection-eight 1847 73 0.9355 0.9295 0.9366 0.9317
ozone-level-detection-one 1848 73 0.9702 0.9702 0.9675 0.9702
parkinsons 195 22 0.8872 0.8615 0.8462 0.8205
pen-based-recognition 7494 17 0.9893 0.9891 0.9896 0.9897
pima-indians-diabetes 768 9 0.7647 0.7791 0.7660 0.7752
planning-relax 182 13 0.7027 0.7222 0.7027 0.7000
poker-hand 25010 11 0.5018 0.5023 0.5005 0.5000
post-operative-patient 87 14 0.7059 0.7059 0.7059 0.6588
qsar-biodegradation 1055 42 0.8692 0.8758 0.8578 0.8682
seeds 210 8 0.9333 0.9429 0.9619 0.9476
seismic-bumps 2584 21 0.9342 0.9342 0.9335 0.9327
skin-segmentation 245057 4 0.9326 0.9366 0.9187 0.9345
soybean-large 266 63 0.9094 0.8717 0.9170 0.8868
soybean-small 47 38 1.0000 1.0000 1.0000 1.0000
spambase 4601 58 0.9287 0.9265 0.9241 0.9246
spect-heart 80 23 0.6375 0.7125 0.6750 0.7625
spectf-heart 80 45 0.6375 0.6500 0.6750 0.7625
statlog-project-german-credit 1000 49 0.7420 0.7400 0.7350 0.7400
statlog-project-landsat-satellite 4435 37 0.9867 0.9820 0.9851 0.9824

For each data set, the best result (or both in the case of a tie) for each method is
indicated in bold.
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Table 7 (Cont.) Out-of-sample accuracy averaged across five seeds for each method
using both regularized and robust-in-both methods on all data sets

Data Set Information SVM Logistic Regression

UCI Data Set Name n p Regularized Robust Regularized Robust

teaching-assistant-evaluation 151 53 0.7200 0.6733 0.8067 0.7067
thoracic-surgery 470 25 0.8511 0.8511 0.8532 0.8468
thyroid-disease-ann-thyroid 3772 22 0.9905 0.9915 0.9910 0.9934
thyroid-disease-new-thyroid 215 6 0.8837 0.8884 0.8977 0.8977
tic-tac-toe-endgame 958 19 0.9812 0.9801 0.9801 0.9801
wall-following-robot-2 5456 3 0.6440 0.5553 0.6537 0.6609
wall-following-robot-24 5456 5 0.6436 0.6561 0.6565 0.6563
wine 178 14 0.9829 0.9657 0.9886 0.9943
yeast 1484 9 0.6869 0.6902 0.6842 0.6929
zoo 101 17 1.0000 1.0000 1.0000 1.0000

For each data set, the best result (or both in the case of a tie) for each method is
indicated in bold.

First, we compare our feature-robust SVM to `1-regularized SVM, which is equivalent to classical

SVM except for the `1 norm regularizer term. This is a feature-robust method under a different

uncertainty set (see Section 4.2). We implemented Problem (3) in JuMP and solved this problem

with Gurobi. Experimentally, feature-robust SVM and `1-regularized SVM produce comparable

classifiers; across all 75 data sets analyzed, the average difference in out-of-sample accuracy between

these two methods was 0.2±0.4%. This therefore gives evidence that our proposed uncertainty set

for feature-robustness is an equally strong model of the uncertainty in the features of the data.

Next, to benchmark robust-in-both methods against regularized methods, we compare robust-in-

both SVM against `1-regularized SVM, and robust-in-both logistic regression against `1-regularized

logistic regression (which uses an ad-hoc method for introducing robustness). For `1-regularized

logistic regression, we implemented Problem (5) with q= 1 in JuMP and solved this problem with

Ipopt. We present the accuracy results for this comparison in Table 7.

In Table 8, we present the relative performance of robust-in-both and regularized methods broken

down into the same two regions as defined in Section 8.4. As before, the regions are determined by

the in-sample accuracy of the non-robust method and the data dimension. We see that for both

SVM and logistic regression, robust methods still offer improved accuracy over regularized methods

for a majority of data sets in the region of lower nominal accuracy and high dimensionality (above

the dividing line). In this region, we see average improvements in out-of-sample accuracy of 0.5%

over regularized SVM and 1.9% over regularized logistic regression. Below the dividing line, we

observe that robust methods are still competitive with nominal methods, although regularized SVM

outperforms robust SVM by 0.7% in this region. If we consider alternate norms and compare robust

SVM and logistic regression against `2-regularized methods instead, we obtain similar results.

These results demonstrate that classifiers do benefit from a principled approach to robustness

evidenced in real-world data, even when compared to regularized methods that are stronger than
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Table 8 Improvement due to robustness by baseline in-sample accuracy and dimension of points,
comparing the regularized method to the corresponding robust-in-both classifier

Baseline Method Region Wins Losses Ties Robust Improvement

Regularized SVM
Above 8 6 1 0.5± 1.1%
Below 18 29 13 −0.7± 0.5%

Regularized
Logistic Regression

Above 8 5 0 1.9± 1.6%
Below 24 28 10 0.1± 0.3%

Region Above refers to the top-left sections in Figure 5 (high data dimension, low baseline accu-

racy); Region Below refers to the bottom-right sections in Figure 5 (low data dimension, high baseline
accuracy).

Table 9 Problem complexity of nominal and robust classification methods

Method Nominal Feature-robust Label-robust Robust-in-both

SVM LO LO MIO MIO
Logistic Regression Unconstr. CO Unconstr. CO Constr. CO Constr. CO
Decision Trees MIO MIO MIO MIO

nominal ones. In all cases, we observe that our robust methods perform best on classification

problems which satisfy the decision rule given by equation (31).

8.6. Computational Tractability and Speed

Table 9 shows the complexity of each nominal method and its robust counterparts. Under all

three classifiers, the feature-robustness does not change the nature of the optimization problem

complexity. Logistic regression changes from unconstrained convex optimization to constrained

when label-robustness is introduced. Label-robust SVM introduced integer-valued variables and

therefore becomes a mixed-integer optimization problem. For Decision Trees, since the nominal

formulation is mixed-integer optimization formulation, label robustness does not change the nature

of the problem. Robustness-in-both takes the maximum complexity between feature-robust and

label-robust formulations; in this case, the complexity is equal to that of the label-robust in all

three classifiers.

In order to provide empirical measures of the complexity of each method, we also compare the

total time required to solve a problem instance for each method with or without robustness across

a selection of UCI data sets. These sets are chosen to be representative of the various dimensions

and separability among all data sets. For the robust methods, a typical choice of ρ= 0.01, Γ = 10%

is used. The problems were solved on a machine with a 16-core, Intel Xeon E5-2687W (3.1 GHz)

Processor and 128 GB RAM and the total solver time taken to solve each problem instance to

optimality was recorded. All tests were limited to a single thread for consistency. If the problem

was not solved to optimality within an hour, the solve was terminated. In this case, we report the

time taken to find the solution that was best under the hour time limit. In particular for robust
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Table 10 Solver time for selected UCI data sets in seconds for ρ= 0.01 and Γ = 10%

Method Type of
Robustness

UCI Data Set (number of points, dimension)

hayes-roth bank. auth. nursery skin seg. flags cnae-9
(132, 4) (1372, 4) (12960, 19) (245057, 3) (194, 59) (1080, 856)

SVM

Nominal 0.00 0.02 0.05 454.38 0.01 0.02
Feature 0.00 0.02 0.36 553.94 0.01 0.32
Label 0.23 4.50 58.58 695.06∗ 0.37 2.41
Both 0.24 4.77 91.70 695.06∗ 0.60 15.81

Logistic
regression

Nominal 0.00 0.05 0.02 0.03 0.03 0.41
Feature 0.00 0.08 0.03 0.16 0.16 113.24
Label 0.03 0.24 4.70 56.33 0.06 0.52
Both 0.03 0.25 5.45 71.12 0.06 0.51

Decision
trees

Nominal 0.02 0.02 0.18 1.44 0.02 0.65
Feature 0.04 0.02∗ 1.06 1.46∗ 0.64 0.65∗

Label 3.39 45.00∗ 0.18∗ 1.47∗ 3.01 183.43
Both 0.05 —a 0.18∗ 1.48∗ 2.39 146.01

∗ Not solved to optimality within the time limit. The time reported is instead the time taken to find
the solution that is best at termination.
a The robust-in-both optimal decision tree problem is infeasible for this particular choice of ρ/Γ.

counterparts of CART, strong heuristics give very good solutions almost instantly, and sometimes

these solutions are not further improved after an hour. In a real-world application of these methods,

the time taken to find the solution is the more important measure than the time taken to prove

the solution optimal; therefore time to finding solution is used.

The results for selected data sets are presented in Table 10. In general, the nominal and feature-

robust classifiers require solver time of around the same order of magnitude. Label robustness

generally slows down computation by 1–2 orders of magnitude; in particular, since label-robustness

for SVM changes the problem from a linear optimization problem to a mixed-integer optimization

problem, the computational time is considerably longer. The robust-in-both classifier tends to

exhibit similar solution times to the label-robust method.

8.7. The Price of Robustness

Introducing robustness in classifiers generates solutions that may be suboptimal under the nominal

data, but are likely to remain feasible or close to optimal when the data change (Bertsimas and

Sim 2004). We can evaluate this trade-off for the robust classifiers by comparing the out-of-sample

accuracies, as evaluating the model accuracy on the unobserved testing data can be thought of as

a way of exposing the solution to perturbations in the training data.

The empirical findings show that robustness improves prediction accuracy in many real-world

data sets across all three classifications methods. In each classifier family individually, feature-

robust, label-robust, and robust-in-both generally have higher winning counts compared to their

nominal counterpart. When comparing all three nominal methods and their robust versions
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together, robustness continues to perform well in the majority of data sets, particularly in subsets

of data sets that are more difficult to classify. Overall, robust methods offer quality solutions that

nominal ones cannot achieve.

Another practical aspect on the price of robustness is the computational time requirement. In

most cases, the computational time for robust methods is on the same order of magnitude as their

respective nominal ones, suggesting that robustification does not incur a significant burden on

speed. It should also be noted that as mixed integer optimization problems, label-robust SVM and

CART can easily be limited by computational constraints. Several problems we considered were

not solved to optimality, rather stopped after a smaller time limit to get a strong, yet suboptimal,

solution. Allowing for longer time limits in these cases has the potential for further improving the

accuracy.

9. Conclusions

In this paper, we consider three major classification methods under a modern Robust Optimization

perspective: SVM, logistic regression, and CART. For each classifier, we address uncertainties

in features, labels, and both simultaneously in a principled manner by constructing appropriate

uncertainty sets and deriving robust counterparts in the same way for all methods. We also discuss

the implementation and practical solvability for each method with robustness.

Synthetic experiments demonstrate that our methods derived by taking a principled approach

to robust classification may improve greatly upon existing classification methods. In the synthetic

study, we show that robust-in-both SVM and logistic regression outperform both nominal and

regularized methods and produce classifiers closer to the underlying truth, especially in the worst

case scenarios. In particular, the 90th percentile out-of-sample errors for our methods are signif-

icantly lower than the 90th percentile out-of-sample errors for the benchmark methods. Because

regularized SVM can be cast as a feature-robust optimization problem for a particular uncertainty

set, this shows that the choice of uncertainty set may be critical. For the simple synthetic problems

considered here, the robust methods derived using label uncertainty sets perform best.

To evaluate the value of adding robustness in practice, we performed computational experiments

on a large sample of data sets from the UCI Machine Learning Repository, comparing nominal, reg-

ularized, and robust methods for each of the three classifiers. We find that robust solutions provide

higher out-of-sample accuracy for many data sets, and the large majority of classifiers which strictly

outperformed all other methods were robust. In particular, we identify that high-dimensional and

hard-to-separate problems benefit most from our principled approach to robustness. The findings

suggest that we can predict how much value robustness will add to a data set given only the accu-

racy of a classical method and dimension of the data set features. This allows us to offer guidance

as to when robust classification methods can deliver significant improvements in practical settings.
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Appendix A: Equivalence with Classical Support Vector Machines

The feature-robust counterpart presented in Theorem 1 is similar to the classical SVM problem (2). Making

the substitution ξ̃i = ξi− ρ‖w‖q∗ in Problem (11), we obtain

min
w,b

nρ‖w‖q∗ +

n∑
i=1

ξ̃i

s.t. yi(w
Txi− b)≥ 1− ξ̃i i= 1, . . . , n,

ξ̃i ≥−ρ‖w‖q∗ i= 1, . . . , n.

(32)

Comparing Problem (32) to the classical SVM formulation (2), we observe that adding feature robustness

or regularization to the hinge loss classifier lead to nearly identical optimization problems. Depending upon

the choice of uncertainty set and the selection of the regularizing term, this equivalence may be exact.

Under the assumption that the training data are non-separable, Fertis (2009) has shown that the robust

optimization problem

min
w,b

max
∆X∈Ũx

n∑
i=1

ξi

s.t. yi(w
Txi− b)≥ 1− ξi i= 1, . . . , n,

ξi ≥ 0 i= 1, . . . , n,

(33)

is exactly equivalent to the problem

min
w,b

ρ‖w‖q∗ +

n∑
i=1

ξi

s.t. yi(w
Txi− b)≥ 1− ξi i= 1, . . . , n,

ξi ≥ 0 i= 1, . . . , n,

(34)

where

Ũx =

{
∆X∈Rn×p

∣∣∣∣ n∑
i=1

‖∆xi‖q ≤ ρ
}
.

It follows that (34) is equivalent to the classical SVM problem (2) for the choice of q∗ = 2, or the `1-regularized

SVM problem (3) for the choice of q∗ =∞. This implies that the classical and regularized SVM problems

are indeed robust formulations of the nominal hinge loss classifier under specific choices of uncertainty set.

Appendix B: Robust-in-Both Proofs

B.1. Soft-Margin Support Vector Machines

Proof of Theorem 7. Using a similar process as in the proof of Theorem 1, we rearrange the first constraint

and solve the minimization problem. Problem (27) can be reformulated as

min
w,b

max
∆y∈Uy

n∑
i=1

ξi

s.t. yi(1− 2∆yi)(w
Txi− b)≥ 1− ξi + ρ‖w‖q∗ i= 1, . . . , n,

ξi ≥ 0 i= 1, . . . , n.

We can reformulate this as

min
w,b

max
∆y∈Uy

n∑
i=1

max{1− yi(1− 2∆yi)(w
Txi− b) + ρ‖w‖q∗ ,0}.

Now we follow the approach in the proof of Theorem 4. �
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B.2. Logistic Regression

Proof of Theorem 8. Using a similar process as in the proof of Theorem 2, we first solve the innermost

minimization problem and show that Problem (29) is equivalent to

max
β,β0

min
∆y∈Uy

−
n∑
i=1

log

(
1 + e−yi(1− 2∆yi)(β

Txi +β0) + ρ‖β‖q∗
)
. (35)

Now we follow the approach in the proof of Theorem 5. Since the polyhedron {∆y ∈Rn|
∑n

i=1 ∆yi ≤ Γ,0≤

∆yi ≤ 1} has integer extreme points, the inner minimization problem above has the same objective as when

the integer constraints are relaxed:

min
∆y

−
n∑
i=1

log

(
1 + e−yi(1− 2∆yi)(β

Txi +β0) + ρ‖β‖q∗
)

s.t. 0≤∆yi ≤ 1 i= 1, . . . , n,
n∑
i=1

∆yi ≤ Γ.

Define the function fi(∆yi) =− log
(

1 + e−yi(1− 2∆yi)(β
Txi +β0) + ρ‖β‖q∗

)
for i= 1, . . . , n. Because ∆yi ∈

{0,1}, we can express fi(∆yi) as

fi(∆yi) = [f(1)− f(0)]∆yi + f(0)

= log

(
1 + e−yi(β

Txi +β0) + ρ‖β‖q∗

1 + eyi(β
Txi +β0) + ρ‖β‖q∗

)
∆yi− log

(
1 + e−yi(β

Txi +β0) + ρ‖β‖q∗
)
.

The inner minimization problem can thus be expressed as

min
∆y

n∑
i=1

[
log

(
1 + e−yi(β

Txi +β0) + ρ‖β‖q∗

1 + eyi(β
Txi +β0) + ρ‖β‖q∗

)
∆yi− log

(
1 + e−yi(β

Txi +β0) + ρ‖β‖q∗
)]

s.t. 0≤∆yi ≤ 1 i= 1, . . . , n,
n∑
i=1

∆yi ≤ Γ.

By strong duality, the inner minimization problem has the same objective value as its dual problem. Replacing

the inner minimization in Problem (35) with the dual problem yields the desired result. �

B.3. Optimal Decision Trees

Proof of Theorem 9. Since the set of constraints affected by applying Theorem 3 and set of constraints

affected by applying Theorem 6 are disjoint, we can simply apply them both simultaneously to yield the

stated result. �

The full robust-in-both Optimal Tree formulation is therefore

min

K∑
k=1

fk−
K∑
k=1

λkdk (36a)

s.t. gk =

n∑
i=1

1− yi
2

zik k= 1, . . . ,K, (36b)

hk =

n∑
i=1

1 + yi
2

zik k= 1, . . . ,K, (36c)
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fk ≤ gk−Γµ1,k−
n∑
i=1

ν1,ik +M [wk + (1− ck)] k= 1, . . . ,K, (36d)

fk ≤ hk−Γµ2,k−
n∑
i=1

ν2,ik +M [(1−wk) + (1− ck)] k= 1, . . . ,K, (36e)

fk ≥ gk + Γµ3,k +

n∑
i=1

ν3,ik−M [(1−wk) + (1− ck)] k= 1, . . . ,K, (36f)

fk ≥ hk + Γµ4,k +

n∑
i=1

ν4,ik−M [wk + (1− ck)] k= 1, . . . ,K, (36g)

µm,k + νm,ik ≥−yizik i= 1, . . . , n, k= 1, . . . ,K, m= 1,4, (36h)

µm,k + νm,ik ≥ yizik i= 1, . . . , n, k= 1, . . . ,K, m= 2,3, (36i)

dk = 1 k= dK/2e, . . . ,K, (36j)

dk ≤ dj k= 1, . . . ,K,∀j ∈Pk, (36k)

dk +

p∑
l=1

akl = 1 k= 1, . . . ,K, (36l)

K∑
k=1

zik = 1 i= 1, . . . , n, (36m)

zik ≤ dk i= 1, . . . , n, k= 1, . . . ,K, (36n)

zik ≤ 1− dj i= 1, . . . , n, k= 1, . . . ,K,∀j ∈Pk, (36o)
n∑
i=1

zik ≥Nck k= 1, . . . ,K, (36p)

ck ≥ dk−
∑
j∈Pk

dj k= 1, . . . ,K, (36q)

aTj xi + ρ+ ε≤ bj + (1− zik) i= 1, . . . , n, k= 1, . . . ,K, ∀j ∈P lk, (36r)

aTj xi− ρ≥ bj + (1− zik) i= 1, . . . , n, k= 1, . . . ,K, ∀j ∈P lk, (36s)

ak ∈ {0,1}p k= 1, . . . ,K, (36t)

0≤ bk ≤ 1 k= 1, . . . ,K, (36u)

zik,wk, ck, dk ∈ {0,1} i= 1, . . . , n, k= 1, . . . ,K, (36v)

µm,k, νm,ik ≥ 0 i= 1, . . . , n, k= 1, . . . ,K, m= 1, . . . ,4. (36w)
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