
15.095 Machine Learning via a Modern Optimization Lens

Fall 2018

Time and place: E51-315, Monday/Wednesday, 4:00pm-5:30pm

Instructors:

Dimitris Bertsimas, E40-111; Tel.: (617) 253-4223; Office hours: by appointment;

e-mail: dbertsim@mit.edu; homepage: http://web.mit.edu/dbertsim/www/

Martin Copenhaver, E40-148; Office hours: by appointment; e-mail: mcopen@mit.edu;

homepage: http://www.mit.edu/~mcopen/

Teaching Assistants:

Colin Pawlowski, email: cpawlows@mit.edu, Office hours: 3-4pm Monday, E51-242

Yuchen Wang, email: yuchenw@mit.edu, Office hours: 3-4pm Monday, E51-242

Recitation: Fridays: 10:30am-11:30am, E51-335

Course Content and Objectives: The majority of the central problems of regression, clas-

sification, and estimation have been addressed using heuristic methods even though they can be

formulated as formal optimization problems. While continuous optimization approaches have had

a significant impact in Machine Learning (ML)/Statistics (S), mixed integer optimization (MIO)

has played a very limited role, primarily based on the belief that MIO models are computationally

intractable. The last three decades have witnessed (a) algorithmic advances in MIO, which coupled

with hardware improvements have resulted in an astonishing over 2 trillion factor speedup in solv-

ing MIO problems, (b) significant advances in our ability to model and solve very high dimensional

robust and convex optimization models.

Our objective in this course is to revisit some of the classical problems in ML/S and demonstrate

that they can greatly benefit from a modern optimization treatment. The optimization lenses we use

in this course include convex, robust, and mixed integer optimization. In all cases we demonstrate

that optimal solutions to large scale instances (a) can be found in seconds, (b) can be certified
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to be optimal/near-optimal in minutes and (c) outperform classical heuristic approaches in out of

sample experiments involving real and synthetic data.

The problems we address in this course include:

• variable selection in linear and logistic regression,

• convex, robust, and median regression,

• an algorithmic framework to construct linear and logistic regression models that satisfy prop-

erties of sparsity, robustness, significance, absence of multi-collinearity in an optimal way,

• clustering,

• deep learning,

• how to transform predictive algorithms to prescriptive algorithms,

• optimal prescriptive trees,

• the design of experiments via optimization ,

• missing data imputation,

• bootstrap methods, and

• matrix estimation including principal component analysis, factor analysis, inverse covariance

matrix estimation, matrix completion, and tensor methods.

Text: Research papers and preliminary chapters from [5]. All handouts can be downloaded from

the course website on Canvas: https://mit.instructure.com

Recitations: The recitations will cover software implementation in Julia, computational aspects,

and examples and applications that enhance the theory developed in the lectures.

Course Requirements: Problem sets, an in-class midterm, and one final team project. A project

will need to involve up to two students per project. Grades will be determined by performance

on the above requirements weighted approximately as 30% problem sets, 30% midterm exam, and

40% final team project.
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Lecture Schedule

Lecture Date Topic Readings

1 W, 9/05 Optimization Lenses and Machine Learning

2 M, 9/10 Best Subset Selection in Linear Regression [13, 26]

3 W, 9/12 Robust Linear Regression and Classification [2, 7, 12, 23]

4 M, 9/17 Algorithmic Framework for Linear Regression [11, 17]

5 W, 9/19 Optimal Classification and Regression Trees [4, 5]

6 M, 9/24 Median and Convex Regression [18, 21]

7 W, 9/26 Missing Data Imputations [24]

8 M, 10/1 Interpretable Clustering [22]

9 W, 10/3 Boosting [29]

M, 10/8 No class (Columbus Day holiday)

10 W, 10/10 Deep Learning [30]

11 M, 10/15 Optimal Trees and Deep Learning [19]

12 W, 10/17 Optimal Prescriptive Trees [6]

13 M, 10/22 From Predictions to Prescriptions I [9]

14 W, 10/24 From Predictions to Prescriptions II [10, 20]

15 M, 10/29 Power of Optimization over Randomization [8, 14]

16 W, 10/31 Identifying Exceptional Responders [15]

17 M, 11/5 Midterm

18 W, 11/7 Bootstrap methods [25]

M, 11/12 No class (Veterans Day holiday)

19 W, 11/14 Sparse Principal Component Analysis [1]

20 M, 11/19 Low Rank Factor Analysis [3]

W, 11/21 No class

M, 11/26 No class (ORC conference)

21 W, 11/28 Sparse Inverse Covariance Estimation [16]

22 M, 12/3 Matrix Completion [28]

23 W, 12/5 Learning with Tensors [27]

24 M, 12/10 Project Presentations

25 W, 12/ 12 Project Presentations
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